UNIVERSITY OF CALIFORNIA
LICK OBSERVATORY TECHNICAL REPORTS
NO. 33

THE VISTA USER'S GUIDE

Tod Lauer
Richard Stover
Donald Terndrup

Version 2
Santa Cruz, California
May 15, 1984

TABLE OF CONTENTS

Commands are listed in UPPER CASE. -
Topics are listed in capitals and lower case

st INTRODUCTION 4

VISTA The VISTA Program
Definitions BASIC DEFINITIONS
Commands VISTA COMMANDS
Files VISTA AND VAX DISKFILES
Run HOW TO START VISTA
HEL.P GETTING HELP
Q STOP VISTA
COMMAND SYNTAX, SUBSTITUTIONS: OUTPUT
Syntax
Redirect THE QUTPUT REDIRECTION MECHANMISM
HISTORY SHOW LAST SEVERAL COMMANDS
A REPEAT A PREVIOUS COMMAND (AND MODIFY IT)
ALIAS DEFINING SYNONYMS FOR COMMANDS
UNAL.TAS REMOVING SYNONYMS FOR COMMANDS
EDIT ‘ EDIT LAST COMMAND '
AF _ ASK FOR A LIST OF FILE NAMES OR OTHER VALUES
FILE NAME SUBSTITUTION CHARACTER
##% INPUT, OUTPUT, AND TRANSFER OF IMAGES AND SPECTRA ##
Input GETTING IMAGES OR SPECTRA
Qutput SAVING IMAGES 0OR SPECTRA
Tape VISTA AND MAGNETIC TAPES
MOUNT MOUNTNG MAGNETIC TAPES
DISMOUNT . DISMOUNT A MAGNETIC TAPE
TDIR PRINT A DIRECTORY DOF IMAGES STORED ON A TAPE
RT READ AN IMAGE FRUM TAPE
WT WRITE aN IMAGE TO TAPE
RD READ AN IMAGE FROM A DISK FILE
Wh WRITE AN IMAGE TO A DISK FILE
RYTS READ A SPECTRUM FROM TAPE
WTS WRITE A SPECTRUM TO TAPE
RE READ A SPECTRUM FROM A DISK FILE
Wa WRITE & SPECTRUM TO A DISK FILE
cop COPY AN IMAGE FROM ONE BUFFER TO AMOTHER
COrPS COPY A SPECTRUM FROM ONE BUFFER TO ANOTHER
BUF _ DISPLAY IMAGE HEADER INFORMATION
BUFS DISPLAY SPECTRUM HEADER INFORMATION
INT START OR EDIT AN OUTRUT DATA TAPE
CLOSE CLEAR AND DISCONNECT AN IMAGE BUFFER
CH CHANGE IMAGE NAME
CHS CHANGE SPECTRUM NAME
GETTING, SAVING, AND PRINTING DATA #i#
GET GET DATA FILE
SAVE SAVE DATA FILE
PRINT PRINT DATA FILES, SPECTRA, OR IMAGE SUBSECTIONS
SETDIR SET DEFAULT DIRECTORIES AND FILE EXTENSIONS

##3# DISPLAY ###
Television INTRODUCTION TO THE AED TELEVISION SYSTEM
™ WRITE AN IMAGE TO THE AED VIDEQ DISPLAY

NSO R R

10Q
i1
11
12
13
15

17
17
17
18
19
19
20
20
22
22
23
24
25
as
268
27
27
28
28
29
30
31

a2
32
33
33

37
38

iTv INTERACT WITH AN IMAGE DISPLAYED ON THE AED 40

COL.OR LOAD A COLOR MAP INTO THE AED VIDED DISPLAY 40
VTEC PRINT AN IMAGE ON THE VERSATEC 42
PIC PRODUCE A GREYSCALE PICTURE ON a VTI00 43
LINE PLOT A SELECTED ROW, COLUMN, OR SPECTRUM (INTERACTIVE 44
PLOT PLOT A BECIFIED ROW, COLUMN OR SPECTRUM (NON-INTERACT 45
CONTOUR MAKE CONTOUR PLOT OF IMAGE OR IMAGE SUB-SECTIOM 47
CL. CLEAN VT100 SCREEN OF TEXT AND GRAPHICS 48
ARITHMETIC ON IMAGES AND SPECTRA ### ‘
AL ADD TWO IMAGES 49
81 SUBTRACT TWO IMAGES 49
DI DIVIDE TWO IMAGES 49
MI MULTIPLY TWO IMAGES 49
AC ADD A CONSTANT TO AN IMAGE - 50
=1 SUBTRACT A& COMSTANT FROM AN IMAGE 50
MC . MULTIPLY AN IMAGE BY A CONSTANT 90
DC DIVIDE AN IMAGE BY A CONSTANT S0
AS ADD TWO SPECTRA 51
88 SUBTRACT TWO SPECTRA 51
MS : MULTIPLY TWO SPECTRA 91
Ds DIVIDE TWO SPECTRA 91
ACS ADD CONSTANT TO SPECTRUM =)™
(=103 SUBTRACT CONSTANT FROM SPECTRUM o2
MC& , MULTIPLY SPECTRUM BY CONSTANT - a2
DCS DIVIDE SPECTRUM BY CONSTANT w2
##% IMAGE ANALYSIS #u# .
BOX DEFINE A BOX DR IMAGE SUBSECTION o4
MN COMPUTE MEAN OF THE PIXEL VALUES IN AN IMAGE 54
FLIP " CHANGE THE ORINETATION OF AN IMAGE - 595
SKY MEASURE THE ‘SKY’ 0OR BACKGROUND LEVEL OF AN IMAGE
ABX ANALYZE THE IMAGE WITHIN A BOX 54
HIST . DISPLAY HISTOGRAM OF IMAGE VALUES 87
AXES " - FIND THE CENTROID OF AN OBJECT IN AN IMAGE o8
PROFILE FIND THE SURFACE BRIGHTNESS PROFILE OF AN EXTENDED OB 59
APER PERFORM APERTURE PHOTOMETRY ON AN EXTENDED OBJECT &0
##3# IMAGE PROCESSING ###%
WIND WINDOW. AN IMAGE TO A SMALLER SIZE &1
SHIFT SHIFT AN IMAGE IN ROWS OR COLUMNS &1
CL.IP REPLACE PIXELS QUTSIDE AN INTENSITY RANGE &2
MASK TELL PROGRAME TO IGNORE SPECIFIED PIXELS &3
UNMASK TELL PROGRAMS TO STOP IGNORING SPECIFIED PIXELS &3
LOG COMPUTE LOGARITHM OF AN IMAGE b4
BL. CORRECT AN IMAGE FUOR BASELINE SUBTRACTIOM NOIGE &4
8MOOTH GAUSSIAN SMOOTHING OF AN IMAGE %]
AP IMAGE MEDIAN FILTER AND PIXEL ZAPPER -1
SURFACE FIT A PLANE OR SECOND~ORDER SURFACE TO AN IMAGE &7
#34 GPECTROSCOPY #itd# :
MASH MASH AN IMAGE INTO A SPECTRUM &9
LAMBDA CALIBRATE WAVELENGTH SCALE FROM COMPARISON SPECTRUM 70
LINEID IDENTIFY LINES IN A WAVELENGTH CALIBRATION SPECTRUM 72
WSCALE CAL IBRATE WAVELENGTH SCALE FROM ‘LINEID’ QUTPUT 73
COPW COPY A WAVELENGTH SCALE FROM ONE SPECTRUM TO ANOTHER 74
ALIGN TRANSFER A SPECTRUM TO A NEW WAVELENGTH SCALE 73
SKYL INE RECALIBRATE WAVELENGTH SCALE USING NIGHT SKY LINES 76
EXTINCT CORRECT A SPECTRUM FOR ATMOSPHERIC EXTINCTION 7h
FLUXSTAR DEFINE & FLUX CURVE WITH A STANDARD STAR SPECTRUM 77

FLUX FLUX CALIBRATE A SPECTRUM 79

STELLAR PHOTOMETRY st

Photometry
MARKSTAR
PSF
FITSTAR
FITMARK
COORDS
MAGSTAR
MODPHOT

##4# VARIABLES
Variables
SET
TYP
ABIK
PRINTF

INTRODUCTION TO STELLAR PHOTOMETRY ROUTINES
LOCATE STARS _

FIND THE POINT SPREAD FUNCTION FOR AN IMAGE
FIND THE BRIGHTNESSES OF STARS

LOCATE STARS AND FIND THEIR BRIGHTNESSES
COMPUTE COORDINATES FOR STARS

COMPUTE MAGNITUDES FOR STARS

MODIFY ENTRIES IN A PHOTOMETRY FILE

H# ¥

VISTA VARIABLES

DEFINE A VISTA VARIABLE AND GIVE IT A VALUE

TYPE A VARIABLE VALUE ON THE CONSOLE

ASK FOR A VARIABLE VALUE ON THE CONSOLE
FORMATTED DISPLAY OF VARIABLE VALUES AND STRINGS

#i## PROCEDURES ###

Procedure
DEF
END
SAME
SHOW
WP

RP

G0
PEDIT
RDEF
IDEF
CALL
RETURN
VER

PA
coTa
Do
END_DAO
IF
ELSE_IF
ELSE
END_IF

#x# MISCELLANY

INTRODUCTION TO PROCEDURES

DEFINE A PROCEDURE

END A PROCEDURE DEFINITION OR EXECUTION

END A PROCEDURE INSERTION AND KEEP TRAILING LINES
8HOW PROCEDURE BUFFER

WRITE A PROCEDURE TO DISK

READ A PROCEDURE FROM DIBK

 GTART PROCEDURE EXECUTION

EDIT THE PROCEDURE BUFFER

REMOVE LINES FROM A DEFINED PROCEDURE

INSERT LINES INTO A DEFINED PROCEDURE

CALL IN AND EXECUTE A PROCEDURE AS A SUBROUTINE
RETURN FROM AN EXECUTING PROCEDURE

VERIFY AN EXECUTING PROCEDURE

WAYS TO PAUSE DURING A& PROCEDURE EXECUTION

JUMP TD A SPECIFIED PLACE IN A PROCEDURE

LABEL A LINE AS A GOTO JUMPING POINT

BEGIN ‘DO’ LOOP IN PROCEDURE

END ‘DO’ LOOP IN PROCEDURE

‘IF* CONDITION TESTING AND BRANGHING IN PROCEDURES
‘IF’ CONDITION TESTING AND BRANCHING IN PROCEDURES
IF ¢ CONDITION TESTING AMD BRANCHING IN PROCEDURES
*IF? CONDITION TESTING AND BRANCHING IN PROCEDURES

33

S
VaXx
BEL.

34
Ses
Fla
dcl

EXECUTE A VAX ‘DIGITAL COMMAND LANGUAGE ’

INSTRUCTION
_DCL EXECUTE A VAX ‘DIGITAL COMMAND LANGUAGE’' INSTRUCTIOM
L TURN THE BELL PROMPT OM OR OFF OR RING THE BELL
EXAMPLES AND APPLICATIONS ##¥%
sionsg SAMPLLE SESSIONS WITH VISTA
t FLATTENING AN IMAGE
HELPFUL VAX COMMANDS TO RUN FROM VISTA

80
81l
84
B8&
88
.88
89
20

?1
91
92
a2
93

94
95
95
96
9%
96
98
57
97
98
98
99
99
99

100

100

101

101

101

102

102

102

102

105
105
105

106
108
109

VISTA The VISTA Program

Definitions BASIC DEFINITIONS

The ocutput from & CCD is called an IMAGE. An image is an
arvay of numbers that are proportional to the amount of light that
fell on the CCD . during an exposure. The term for manipulation of
these numbers is IMAGE PROCESSING, The VISTA program does this image
processing by executing commands issued by the user, ‘

A CCD is a solid—state chip that has a rectangular array of
PIXELS, or ‘picture elements’. A pixel has both a location and a
value; it is the array of values that constitutes an image. The
location of a pixel is specified by its ROW and COLUMN. Rows and
columns are numbered continuously from some starting value, ‘usually
ZERQO. (Thus an image with 400 rows and 350 columns will have the rows
numbered from O to 399 and the columns numbered from O to 34%9). The
starting vow or column may be non—~zevro however: for example, the
numbering may run from 100 to 499, instead.

it is convenient to refer to images by a label or name, rather.
than having to refer ta rach of the pixels individually., For this
reason, the VISTA program has several BUFFERBE (reserved places in
memory) for the storage -of images. VISTA can hold up to ten images at
once; an image is referred to by the number of the buffer that holds
it. The buffer numbers run from 1 to 10. :

Aleo associated with each image buffer is a HEADER. The
header is a list of numbers or character strings containing properties
of the image: number of Tows and columns, date of observation, etc.
These are always associated with an image and are avtomatically
copied or adyusted if the image itself is copied or adjusted.

A SPECTRUM is a linear array of numbers representing the
amount of light at each wavelength interval from an astronemical
object. . A CCD used for spectroscopy does not produce a spectrum
direct1q1 rather, it records a2 two—dimensional image of the
spread-out light behind the slit and grating. This image is later
converted (‘mashed’) inte a spectrum. VISTA provides twenty buffers
(numbered 1 through 20) for storing spectra. Like images, spectra
have headers. Do not confuse the spectrum buffers with the 1mage
buffers -~ they are d1PFerent : : - s

Various VISTA programs produce data sets ithat are neither
images nor spectra. The buffers for the storing of these data are not
refered to by numbey, usuvally because there is only ane of each type.
These data can be saved on the disk (with the SAVE command): vetrieved
(with GET) or displayed (PRINT).

A very important feature of VISTA is PROCEDURES. These are
lists of commands that are exectued as a group. There is & special
buffer for storing procedures, and they may be saved on the disk for

Page 2

repeated use. VISTA also has VARIABLES, which are symholic names for
numerical values. Using variables in procedures greatly expands the
power of VISTA: by allowing the user to write complex programs.

Commands VISTA COMMANDS

VISTA worké by talling various subroutines from a set of
libraries. You tell VISTA what to do by entering commands. as you do
when operating the VAX.

Commands come in several types. The simplest commands, such
as ‘G’ (which halts VISTA) work on no data and only operate in one
way. Commands that manipulate images or spectra have an ‘object’ that
the command operates on. You should always specify the object
immediately after the command. An example of this is ‘ZAP 1’ which
performs the ZAP operation (g.v.) on image number 1. More complicated
commands have ‘parameters’ that control their operation, Parameters
allow you to tailer the operation of the command to suit your needs.
An example of a command with parameters is ‘BOX 2 CC=100 CR=123 NC=100
NR=25‘. Parameters can appear in any order pn’the command line.

There can be only one command on each line, and the command
itself must come first. You must specify the object(s) and any
parameters on the same line as the command. Some programs will ask you
for additional information if you forget something; others will
immediately return without doing anything ather than printing an error
message which will tell you what you did wrong. ~ As an example of this,
consider the SC command, which subtracts a constant from a specified
image. Suppose you wanted to subtract 40.3 from each pixel in image 1.
The full cummand is

8C 1 40.3

I+ you type only ‘SC 1, VISTA will respond with a message
‘CONSTANT TO SUBTRACT: ‘., When you enter the number and hit RETURN,
the command will be executed.

Any character can appear on the command line, but characters
after the first occurance of ! in a command are ignored. The ! is the
- VISTA ‘comment character’, providing. a . way to label individual
- commands. Here is an example of a command with a comment:
8C 1 40.3 ! Subtract 40.3 from image 1.

Commenting commands comes in very handy in procedures.

There are several types of parameters that can appear 1n a
command:

1) Integer constants. These are used to denote buffers that store
the images and spectra. They must not have a decimal point:

2}

3)

4)

o)

&)

Page 3

for example, ‘17 is an integer constant, while ‘1.’ is not.
(See 'SYNTAX’ for ofther ways of specifying buffers,)

Real constants. These are numbers containing a decimal
point (e.g.. ‘3.147), and are used as input to VISTA
programs that require a numeric value as a parameter.

Variables, These are symbolic names for real constants.
Symbolic names can generally be vsed wherever a real constant
is required. The value of a variable is set by the SET
command: for example ‘SET BIAS=40.0’ assigns the value

40.0 to the name BIAS. In the above example with the ‘SC’
command., you could have typed ‘8C 1 BIAS' to subtract 40.0
from image 1, provided that BIAS had been daefined, and its
value set to 40. 0. Variables can alseo he used to dencte integers
in some programs; the veal number assigned to the variable
name. is converted to the nearest integer before execution.
Some VISTA programs automatically set variables as a way of
saving their output for use later,

Keywords., Certain commands have words as parametes. These
contTrol the operation of the program. ‘HARD‘Y, for example,
is a- keyword of the ‘PLOT’ command,. I "HARD’ is intluded

in the command, the output is sent to a plotteri if it is

not included, the output is sent to the user’s terminal.

Keyword values, These are combxnatlons of keqwords and
arithmetic constants, and are used to pass values to

VISTA subroutines, where needed. WKeyword values have the
form ’‘WORD=value’: i.e., & keyword immediately followsd by
an equal sign, immediately followed by a constant. The
constant can be either explicit or symbolic, for example

SHIFT 1 DR=2. 3 and SHIFT 1 DR=INCR

do the same thing, provided INCR has the value 2 3.
You can alse use arithmetic expressions Follnwlng the ‘="'
sign, as in ‘SHIFT 1 DR=INCR+3.2°

Character strangs.,wThese are sequenceswoF alpha-numeric
symhols not interpretable as a number. Some VISTA commands

use character strings as input. If a character string consists
of more than one word (i.e.., if there is a ‘space’ character

in the middle}, the entire string must be contained in single
quotes: ‘THIS IS8 A CHARACTER STRING WITH EIGHT WORDS‘

VISTA takes the command line. and splits it up into several

lists: a list of integers, a list of floating—-point numbers, and a
list of character strings. The programs in VISTA examine these lists
to decide what to do.

Page 4

il

More information about command syntax can be found in section
Il of this manual.

-

Files VISTA AND VAX DISKFILES

Many VISTA commande read from or write to the disk, and
therefore reguire filenames. The program has defined several default
directories and extensions for the various types of files that VISTA
uses: for example, images are stored in one directory. spectra in a
second, procedures in a third, etc. Unless you specify otherwise,
VISTA will automatically search in certain directories for images,
spectra, etc., and will assume that the files have standard
extensions. You can view these default directories with the VIETA
command PRINT DIR. It might be nice to save a copy of these
directories for future reference: Use the command PRINT DIR >LP:

An example of a default directnrg is this: The WD command
writes an image to disk with a filename specified in the command.

The command

WD 2 M15

\

writes the image in buffer 2 to the file [CCDIMiIS. CCD. The program
wrote to the default directory L[CCD] and used the extension .CCD. You-
can override the default locations any time: for example

WD 2 L[DEMOIMID

writes to [DEMOIMIS5. CCDi the command
WD 2 M13. XYZ |

wurites to CCCDIMLIS. XYZ.

The defavult directories are established when the VISTA program
'is run by a subroutine called INITIAL. That subroutine has a standard
-1list of directories and extensions that it loads inte a common block
for use by other subroutines. There is a way to change the default
directories before vunning VISTA without changing any of the
subroutines., This allows you to control the storage and retrieval of
data in a somewhat cleaner way then overriding the default directories
with each command. To change the default directories, use the DCL
command DEFINE (symbol name) (directoryname). The symbols you can use
are ;]

Symbol _ Directory #for

V$CCDIR Images

Page o

VEPRODIR . Procedures
VHEPECDIR Spectra
VHFLUXDIR Flux calibrations
VELAMDIR Wavelength calibrations
V4COLORDIR TV color files
VEDATADIR Data files.

An example is: DEFINE V$CCDIR C[DEMO. CCDI]

This command changes the default directory for storing and retrieving
disk images to L[DEMO. CCD]. Remember ¢to do this BEFORE you begin
running VISTA, (It you want the same default directories all the
time, you can put the DEFINE statements in your login file LOGIN. COM.)

The defavult directores and extensions may be changed while running
VISTA with the command SETDIR.

VISTA can also run a designated procedure as it starts up. Use the
symbol VESTARTUP to specify the FILE containing the procedure you want
executed as the program begins. Typically this procedure will defins
aliases or set the values of variables. Read-the section on procedures
(‘"HELP PRDCEDURE’ if you are on a terminal) for more information.

Run _ HOW TO START VISTA

To start the VISTA programa log. in on the VAX, and issve
the command . :

RUN CCCDEV. BASEIVISTA

VISTA will respond with a ‘welcome’ message and a prompt (€0:). The
prompt tells you that the program is ready to execute a command. Type
a command you want, and hit RETURN. When the tommand is completed,
"the prompt will reappear. If you type a command that VISTA does not
recognize, it will say so. ~ :

To save typing the above command svery time gou start the
program, put

VISTA == RUN L[CCDEV. BABEIVISTA

into your login file CLOGIN.COMI. Then. the command ‘VISTA’ will
start the program.
VISTA is a very large program: and your account must be

specially configured to run it. Bee the system programmer to make
sure your account is so configured.

Page &

HELP GETTING HELP

Form: HELP [subjects] [ALLI Coutput redirectionl]

where:

subgjects are the subjects for which information is
desired,

ALL produces a manwval.

HELP is used to get information about commands and topics, or
to produce a hardropy manual for reference. A command is, of course,
a process that can be executed directly by VISTA. A topic is a set of
information about some aspect of VISTA. For example, this information
appears under the command ‘HELP’, while introductory material about
procedures is found under the topic ‘Procedures’.

To get information on a particular command ov topic, type HELP
followed by the name of the command or topic. If you want help on
several subjects, type them all on the command line. The words should

be separated with blanks, as is usual with VISTA commands. Three examples

are;
HELP SC | " information on the command SC.
HELP SC ZAP FITEBTA information. on 8C, ZAF, AND FITSTAR.
HELP Photometry information on photometry.

The first line of information about commands contains a line
beginning with ‘Form: “» which spells out the syntax of that command
in detail.’ Following this are more detailed explanations of the
workings of that command. These paragraphs form an example aof an
entry readable by the HELP command. Important: HKeywords listed in
square brackets (as [ALLI, above) are OPTIONAL; they modify the
operation of the command, if desired, but need not be specified under
all circumstances. ‘

The output of this program can be redirected. (The output
redirection mechanism is described in ¢the section ‘REDIRECTY ——
type HELP REDIRECT if you are on a terminal.) You can receive a
printed instruction manual for VISTA, complete with page numbers, a
table of contents and an index by typing ‘HELP ALL >LP:

The HELP command reads its information from a disk file, which
has the commands and topics organized in groups, called ‘subjects. ’
Typing HELP by itself produvces a list of the subjects, called a
‘menu. You can then, without returning to the VISTA command mode,
list the commands and topics under any given subject: or display
information an any given command, Just as you would if you were doing
it directly with the HELP command in VISTA. When seeking information
in the menu-mode, you do not need to type HELP: Just list the

Fage - 7

commands or topics that you want, éeparatad by spaces (i.e., the HELP
command without the word ‘HELP’),

Examples of the help command:

1) HELP MaASH _ Sends the information on ‘MASH°
to your terminal.

2) HELP MASH >MASH. XXX Sends the information on ‘MAGH’
to the file MASH. XXX

3) HELP AI >LP: : Prints a copy of the AI helpfile

on the line printer.

Q 8T0P VISTA

Form: @

This command stops VISTA, returning the user to DCL command
level. This command is executed immediately and can not be used in a
procedure. The contents of all image and spectrum buffers are lost.

Page B

Syntax

This section reviews mechanism in the VISTA syntax which
modify the operations of commands or allow repet:tiun of commands with
variation, and describes the very important procedure for using VISTA
variables to specify image or spectrum buffers.

Qutput #rom various commands can be ‘redirected’, which means
that the output can be sent somewhere else than your terminal. Type
HELP REDIRECT for a description.

You can repeat previouly executed commands by prefixing the
first (few) characters of that command with %. You can use the editor
on the last command with the command EDIT. You can also define new
commands in terms of old ones with ALIAS, '

There are several ways to substitute or insert new keywords
into a command line. The # construction is used to insert previowsly
defined STRINGS into the command line. These strings are obtained
from a list which is loaded with the command AF, New parameters may be
added with % or on the end of synonym commands defined by ALIAS.

A very important substitution mechanism is the $ construct,
which is vused to specify IMAGE OR SPECTRUM buffers with variables.
The rule for using $ is this: Any time you you would use an integer
to specify a buffer, you can use a variable in the same place hg
prefixing the variable name with %. For example

RD 3 [MYDIRIMYIMAGE
and
RD £IM LCMYDIRIMYIMAGE

does the same thing, provided that IM has the value 3.

This construction replaces the old formula for specifuing
buffers, which was I=name for images and S=mame for spectra. Mast
programs require images or spectra but not both. For those few
programs that handle both, you have to use S=name to specify a
spectrum buffer and distinguish it from an image. An example of this -

SET Q=3
PLOT %@ R=5 plots row 35 of IMAGE G (=)
PLOT S=Q plots BPECTRUM Q (=3}

Redirect THE UUTPUf'REDIRECTIDN MECHANISM

Many (but not ail!) programs that produce large amounts of
information may have their output REDIRECTED by the user. The output
from these programs normally goes to the terminal:, but instead can be
written to a file or to the line-printer.

To redirect the ocutput, you must use the >’ or '2>/
constructions at the end of a valid command,. They work like this:

(command) >filename . writes the output to the
specified file, creating a new
version of that file.

(command) >>filename ahpends the output to the
specified file. I# that file
does not exits, it is created.

{(command} >LP: ‘ | : sends the;outpuf to the
‘ printer. -
Examples: : _
PRINT PHOT >FIRST/LIS . | Prints the contents of a

" photometry #ile into the file
‘FIRST.LIS’. The file will be
lpcated in your cyrrent
default directory.

HELP MASH DLP: - ~ Bends the help file far MASH
: to the lineprinter.

HELP MASH >2HELP. XXX - Appends the help information
for MASH to the end of file
HELP. XXX, if it exists. If it
does not, the file is created.

HISTORY SHOW LAST SEVERAL COMMANDS

Form: HISTORY

~ The command HISTORY will show on your terminal the last .
several (typically 20) commands that you have executed. Use this t
find commands that you want to repeat with the % substitution
character.

Page 10

% REPEAT A PREVIOUS COMMAND (AND MODIFY IT)

You can repeat a command in VISTA without typing it over
with the % character. The %4 character comes before the command you
want to repeat. It is also possible to modify a command while g4ou
‘repeat it .

The 7% comes in several forms:

—=2 Typing ‘%" by itself repeats the last command that you
executed. '

——2>» Typing ‘%n‘ where ‘n’ is a number repeats command n.
The numbers of the command can be found by the HISTBRY

‘ command.

—=> Typing ‘%string’ repeats the last command beg1nn1ng

‘ with ‘string’

’

Suppose the HISTORY command gives the output

i0 RD 1 tMYDIR]HD183143
i1 MN 1
i2 Al 2 1 ;o
13 - PLOT 1 R=342 MIN=100.0 MAX= 300. 0
14 MASH 4 1 SP= (100.103)
15 PLDT g=4
Then pA repeats command 15: = PLOT S=4
%10 repeats command 10: RD &t EMYDIRIHD183143
“MASH repeats command 14: MASH 4 1 SP=(100, 103)
pAN] repeats command 1i4: MASH 4 1 SP=(100, 103)

L3

NMote the last example: The history mechanism will repeat the last
command which begins with ‘™M’ If there are several commands which
begin with the same letter. you have to supply enough of the command
name after the % to uniquely specify the command to be repeated.

It is possible to modify a previous command using the %
construction before executing the command again. There are several
ways in which this modification can be dane: ‘
71) You can ADD words to the command by typing them after
you enter ‘Acommand’, provided that these words are

not keyword values (EXPRESSION=VALUE) which are
already present in the previous command,.

2) You can modify keyword values which already exist in
the previous command by simply rTepeating the
keyword with a new value. For instance, if the old
command was "PLOT S=1 PIXEL NOERASE HARD", you could
repeat it for a different spectrum by Just entering
" '/P S-—.Q ll

Page 11

3) You can farce a keyword value to be added to or
subtracted from the previous command (and not sub-
stituted 25 described above) by preceding the keyword
with a plus (+} or minus (-} sign.

Examples of command modification with % Assume you wanted to
‘repeat in various ways the command

PLOT &=1

which, we will assume is number 10 in the history list.

%10 HARD . does PLOT 8=1 HARD
%10 8=5 : does PLOT S5=95
%10 8=5 HARD ' does PLOT 8=3 HARD

410 XS=100 XE=200 doés PLOT S=1 X§5=100 XE=100
Mow suppose that command number 9B was

PLOT =3 PIXEL HARD X8=100 XE=300 MAX=40%6.0

Then _
%58 ~PIXEL —HARD dbeg ‘ ' PLDT X=3 X8=100 XE=300 MAX=40%6. 0
ALIAS DEFINING SYNONYMS FOR CDﬁMANDB
UNAL IAS REMOVING SYNDNYMS FOR COMMANDS |
Form: ., ALIAS Lsynanyml Ccommand] [output redirectionl

UNALIAS synonym

The ALIAS and UNALIAS commands are used to define and remave
synonyms for commands. This can save you typing if ynu have several
commands that have to be used repeatedly,

The command ALIAS (with no arguments) shows a list of synonyms
of your terminal. - The list can be loaded into a file or sent to the
printer with the ouvtput redirection mechanism. :

To define a command, use the full syntax ALIAS SYNONYM COMMAND.
An example is :

ALIAS T ‘TV 1 1234. 0 CF=NEWTHREE’

This defines a new command, T, which executes TV 1 ...’ .

As is usual, if the command for which you are defining synonym is
composed of more than one word, the entire command must be enclosed in
quotes.

Page 12

I# you give only the new synonym and no not give the command,
the program will ask for it. VYou can redefine a synonym at any time.

To execute the command that you have defined with ALIAS, type
the synonym Jjust as you would type any other command. You can add
keywords fo the command at the time of execution by typing them after
the synonym, Using the example above, the command

T BOX=1

executes TV 1 1234, 0 CF=NEWTHREE BOX=1. The command ‘T’ goes on the
history lisét.

To remove a synonym, use the UNALIAS command. Type
UNALIAS followed by the name of the synonym that you want to remove
from the list. As an example, UNALIAS T will remove the definition
of T that we have done above.

It is not possible to define a synonym in terms of another.
For example, the sequence .

ALIAS A TV 1 1234. 0 CF=NEWTHREE‘
ALIAS AA ‘A BOX=1' -

defines pruperig the command ‘A‘ but:NOT the command AA. (If you
tried to execute AA the program will say ‘AA is not a command. ‘)

You can have sqnongmé defined automatically by putting ALIAS commands
in the startup procedure. See the sections FILES and PROCEDURE for
information about the startup procedure.

EDIT EDIT LAST COMMAND
Form: EDIT

The command EDIT loads the last command (whatever it was) into
a temporary file in your current directory, them runs a process which
allows you to edit it with the EDIT/EDT editor. If you leave the
editor with EXIT., the command is immediately executed. If you leave
with QUIT, the command is not executed. . S S ST

Page 14

AF ASK FOR A LIST OF FILE NAMES OR OTHER VALUES

Form: AF file_buf EN=numberl (CNT=var_namel L[‘PROMPT’] LIF=+filel
[OF=¢filel

where:

file_buf "~ is an integer (i ~ 5) specifying which list
is being defined.

=number tells VISTA that there will be ‘number’ entries

in the list. '

CNT=var_name counts the number of entries in the list, and

sets the value of the variable ‘var_name’ to
‘he that count.

This command constructs lists of file names., defined variable

names, or numeric constants which can be used by other commands. The
list is read with the #character in a command line (see the secticn on
H), AF can define up to five lists. : :

The normal procedure for making one of these lists is to first
tell VISTA how many names are going to be entered (really the minimum
number VISTA should expect) followed by the actual names. To make the
command specific to your particular yob you can supply a prompt which
VISTA will type on the terminal before it asks for the number of names
you are about to enter. If you don’t supply the prompt VISYA will use
its own. As described below, the N= and IF= optional keywords can be used
to modify this normal procedure for entering file names. :

The optional ‘N=number’ keyword allows you to specify on the
command line the minimum number of file names VISTA should expect you to
enter. The ‘number’ can be either a numeric {(integer) constant: a
defined symbol or the question mark. If & numeric value 1s supplied then .
VISTA will print the prompt (which would typically be something like
‘ENTER OBSERVATION FILE NAMES‘) and then wait for you to enter the file
names. At least ‘number’ names or constants must be entered. I# N=? is
supplied then the prompt will be issued and VISTA will wait for 3 single
line of file names to be entered. - Note that in this case the ‘CNT=’
keyword (see below) will be especially useful since VISTA will count the
number of file names for you.

Page 14

The optional keyword ‘IF=file’ can bhe used to direct VISTA to
use the file ‘file’ as the source of the file names instead of your
terminal. If the number of names in ‘file’ is less than the minimum
number of names you told VISTA to expect, then VISTA will revert back
to the terminal and wait for you to enter additional names. If you gave
the ’'N=?‘ keyword then VISTA will read ‘file’ until it encounters the
end~-of-file. Here again, the ‘CNT=' keyword may be especially useful.
VISTA uses [CCD. DATAJ#ile. ASK unless you specify a different directory
or file extension,

The optional keyword ‘OF=file’ can be used to direct VISTA to
write its list of file names out into file ‘file”. In a subsequent
AF command you can use the ‘IF=file’ keyword to re-use the list of names.
Also, the file can be edited directly with EDT.

The optional keyword value CNT=var_name provides a way for a
procedure to find out how many file names were actually entered.
The AF command will count the number of file names given and will
set the variable var_name to that value. One popular use of var_name
is to caontrol a procedure DO loop, as in ‘DO I=1, var_name’.

HOW TO SPECIFY FILE NAMES TO ‘AF”

The AF command accepts a servies of file names which are later
doled out by the ’#‘ pseudo—command. When the AF command asks for file
names, they can be given in a number of formats. The simplest format is.
to enter each file name on a separate line. Alternately, multiple file
names can be entered on the same line if the names are separated by at
least one space. '

More cbmplex formats make it easy to specify a series of file
names which have similar names. For instance, a series of files all
of which have the same directory can be specified as:
CDIRIFILEL, FILE2, FILE3, ... where ‘DIR’ represents a directory name
and ‘FILELl,FILEZ, FILE3. ..’ represents a series of file names. Note
that the files are separated (or connected, if you like) by commas.
A space character or end-—of-line will terminate the series. When the
file names are extracted by the ‘#‘ pseuvdo—command the first is
CDIRIFILEL , the second is [DIRIFILER2 , and so on.

The directory in the previous example can bhe replaced by a
physical device name. For instance:. MTAO:FILEL,FILE2,... would
be extracted as MTAO:FILE1l, MTAOQ:FILE2, etc. If needed, a physical
device name and a directory can be used together. as in:

DRAO: LDIRIFILEL, FILEZ, . ..

Page 15

A final file farmet is provided which makes it easy to specify a
series of similar file names which have a numerical component in their
names. A simple example of this format is: A4#B, 1~-10 where ‘A’ and ‘B’
represent arbitrary (including possibly non-existent) character strings
and the #’s represent place—holders which will be replaced by decimal
digits when the actual file names are extracted. The numeric field.
#1-107, specifies the range of values to be substituted for the #’s.
This example produces ten file names: ACIB, AO02B., ..., A10B. Actuvally.
any number of #‘s (within reason) can be specified in the file name, as
long as there are enough to satisfy the range of the numeric field.

Several additional parameters can be added to the last example.
For instance:, A##B,0-10/2 produces six file names: ACOB, AO02B, AQ4LD,
A10B. The number #following the ‘/‘ specifies an increment for the
numeric field. Individual files can also be excluded from the series as
shown in A##B, 0~99X5, 43,52 . This represents 97 file names. The
missing names are AOSB, A43B., and AS2B. Both the increment and
exclusion list can be supplied, but the increment must be given first,
as in A##B, 20-40/4X36 which represents five names. ' '

& : FILE NAME SUBSTITUTION CHARA&E'R'
Form: ' #file_buf . - ‘
where Filé_hu# ié an integer}‘lufhough 3.

This is a pseudo-command, ysed in cdnJunction with the AF
command to obtain file names or numeric constants from a previously
defined list, or to generate permuations in a pattern of filenames,

The first step in constructing and using a filename list is the
AF command (gq.v.), which can store up to five lists. The #file_ buf
command is then vused to extract the names or constants from the stored
lists. The index ‘file buf’ specifies from which of the five sets the
name or constant is to be extracted. Bome typical uses of the #file_buf
command are: : :

1) RD 1 #1 . reads a an image stored on the disk into
buffer 1. The name of the file is at the
top-of list 1. S

2) AC 2 #3 adds a constant to image 2. The constant
is at the top of list 3.

3) SET Ye=#5+X K sets the value of Y to be X added to the
variable at the top of list 5.

Before VISTA executes each command it scans it to look for the #file_bu#f
constructiaon. If it is found then VISTA replaces it with the next file
name or constant in the specified list. Only then iz the command

Page 164

executed. Any place that a file name, arithmetic constant, or symbol
name can be used the #file buf constuct can be used.

w

Page 17

Input GETTING IMAGES OR SPECTRA
Qutput SAVING IMAGES OR SPECTRA

VISTA aoperates on images or spectra stored in internal
buffers. Therefore, before you are able to analyze an image or a
spectrum, you have to get it into one of the buffers from either a
tape or the diek. You can with a VISTA command move an image from a
VISTA buffer to tape or to the disks, or move one from tape or disk to
a buffer. It is not possible to do a direct transfer between tape and
disk. Spectra can be moved around in the same way.

Note the repeated use of the phrase ‘with a VISTA command. ’ The
commands for data transfer in VISTA are not quite as flexible as the VAX
commands COPY and RENAME. You must use VISTA commands to read CCD data
tapes produced at the observatory, or to enter the images inte the
buffers. Once an image or spectrum is produced, and after it is stored
on the disk {again, with a VISTA command), you can use VAX commands to
save these images on tape. Read the information in ‘TAPES’ for details
and instructions. :

The command-syntax for moving images around is simple: The
transfer commands are all two-letters long.. Commands beginning with
‘R’ READ images: while commands beginning with ‘W’ WRITE images.
(Always remember that the reader or writer is the VISTA program!). I#
the second letter of the command is ‘T’, the command works with the
tape drive, while if it is ‘D’, it works with the disk. Thus:

RD . reads an image from disk,

WD ' writes 'an image to disk,

RT . reads an image #from tape, and
WT . writes an image fto tape.

The commands for moving spectra arvound are:

RS reads a spectrum from disk,
Wg writes a spectrum to disk,
RTS reads a spectrum from tape, and
WTE - writes a spectrum to tape.
Tape T T TTVISTA AND MAGNETIC TAPES — A

CCD data on magnetic tapes are generated either f#from the
Mt. Hamilton data—taking systems, or by VISTA itself. There are two
computers on the Mountain that control the CCD: ¢the LBI-11 and the
PDP-8. These write the images in different formats, but VISTA can
read either. When running VISTA, you do not need to specify any tape
formats: +the program can tell automatically which way the tape was
written.

Page 18

If you plan to use a magnetic tape in a session with VISTA, you
may mount it BEFORE you begin running VISTA. Use the VAX command
‘MOUNT/FOREIGN MTO‘ or ‘MOUNT/FOREIGN MT1’ to mount the tape on one of
your two drives. Or you can mount the tape while Trunning VISTA bu
using the VISTA ‘MOUNT’ command.

The VISTA command WT (WTS) will write an image (spectrum} to
tape in the same format as the mountain computers, This allouws you to
save images on tape for later use, and to read those images with VISTA.
There is another way to save images on tape: if an image or a spectrum
is written to a disk file, you can transfer it to tape. preserving its
VAX format. To do this, mount the tape with the MOUNT command (not ‘
MOUNT/FOREIGN). Then use the COPY command just as you would to save
any other VAX file to tape: .

COPY filename MTO:FiIename {or MT;:?ilename)
To bring it back to disk, mount the tape and use the VAX command
CGPY MTO: filename filename ‘%hr MT1i: #ilename)

These commands must be executed BEFORE you beg:n running VISTA. When
starting a new tape. gnu must use the VAX command INITIALIZE.

Be careful! Remember what Fnrmat your tapes are wr1tten' Do not
- mix formats on a single tape!

~Ancther reason to be careful is this: The data on FITS format tapes
are stored as 16-bhit signed INTEGERS, so data values outside the range
—32767 to 32768 will not be stored properly. I+ you have data values
outside this range, you will have to scale the image as you write it.
The tape writing commands have a kegword ‘AUTO Y which will determine
the best scaling for you.

MOUNT MOUNTNG MAGNETIC TAPES
Form: MOUNT CUNIT=11

MOUNT mounts a magnetic tape on unit 0 (if no keywords are
given) or on unit 1 (if the UNIT=1 keyword is included).
This is equivalent to a MOUNT/FOREIGN in DCL, and allows you to
mount tapes while running VISTA. Also see DISMOUNT,

At Santa Cruz, unit O is MTAO: and unit 1 is MSAO:
Examples:

MOUNT mounts a tape on unit ¢
MOUNT UNIT=1 mounts a tape on unit 1,

Page 19

DISMOUNT DISMOUNT A MAGNETIC TAPE
Form: DISMOUNT LUNIT=nl

DISMOUNT is used to dismount a magnetic tape that was mounted with
the VISTA MOUNT command, It cannot be used to dismount tapes that
were mounted with the DCL command MOUNT/FOREIGN before VISTA

was Tun,

DISMOUNT can be used with no arguments if you have only one tape
mounted. It dismounts that tape regardless of the tape drive it
is on. I1f more that one tape is mounted, you must specify the
unit number of the tape with the UNIT keyword.

TDIR PRINT A DIRECTORY OF IMAGES STORED OM A TAPE

Form: TDIR [comment] C[UNIT=nl Coutput redirectionl

where:
comment (character string) is a comment or label

to appear at the top of each page in the list, andgd
UNIT=n ' tells VISTA which tape drive to use. UNIT=0

reads from MTO and UNIT=1 reads #rom MT1.
(MTO = MTAQ:, MT1 = MSAQ: at Lick}

This command will print out a paged listing of the images
stored on a tape. The ob)ect names and observing parameters are
printed. The optional comment will be printed at the top of each
page. If the comment has more than one word in it, the entire comment
must be enclosed in single quotation marks. '

Examples:

1y TDIR print a dirvectory of the images on the
currently mounted tape, assuming that
only one is mounted. The output is
sent to your terminal. —

2) TDIR >LP: Sl does the same thing as the above, but
sends the listing to the lineprinter.

3) TDIR UNIT=|1 print a directory of the images on the
tape that is mounted on MT1. You need
to do this only if you mounted two tapes

43 TDIR ‘TAPE FIVE' print a directory of images on the

currently mounted tape, with the label
TAPE FIVE at the top of each page.

Use the commands PRINT IM or PRINT SPEC to give a list of the images
or spectra on the disk.

Page 20

RT READ AN IMAGE FROM TAPE
Form: RT dest image_number C[UNIT=n] S
where:
dest (integér or % constuct) is the buffer where
the image will be stovred,
image_number (integer or variahbhle or % construct)

is the number of the .
image on the magnetic tape, and
UNIT=n . tells VIGTA to read from drive n (integer).

RT will read an image from either a standard PDP-8 style tape
or a FITS style tape as produced by the LSI-11‘s. You do not need to
specify the style of the tape: VISTA reads either style automatically.
Image numbers on tape start with image iI. If ‘image_number’ is not
included on the command line then VISTA will ask for the image number
when the command is executed. If you are using -more than one tape, you
can specify the unit with the ‘UNIT=’ keyword. Unit O is MTAO: and unit
1 is MSAQ: here at Lick Observatory. - S o :

Examples: _ o
1) RT 1 3 . reads the third 1mage on tha magnet1c tape
o into buffer 1.
2) RT 1 $TNUM reads image number TNUM on the magnetic tape
- (where TNUM is a variable) into buffer 1.
3} RT ¢N S reades the fifth image on the magnetic tape 1ntu

buffer N, where N is a varxable

4) RT 2 9§ UNIT=1 reads the F1Fth image on the magnetic tape that
is mounted on MSAQ: into huffer 2.

WT WRITE AN IMAGE TO TAPE

Form: WT source [PDPBY EZERO=z1 {SCALE=s] [AUTOJ LCUNIT=nl

whers:
source (integer or % construct) is the number of

, the buffer holding the image %o be written,
PDPB tells VISTA to write in PDP-8 format,

ZER{O=z ad justs the zero level of the image to 2

Page 21

SCALE=s scales the image by s (const. or variable), and

AUTO computes best ZERD and SCALE to preserve the
best precision on the data tape,
UNIT=n writes to tape unit n (integer).

This command will write an image to tape in the standard
L8I~-11 FITS style. Images are always written at the end of the tape.
(To initialize a tape, use the ‘INT~ command.) When the image has been
written out VISTA will print on the terminal the tape image number
into which it was written., VISTA will write your tape in the old PDP-8
style if you give the ‘PDPB’ keyword. This should be done only if the
tape already has PDP-B style images, since you should not mix the two
styleg, ‘

The image pixel values written to the tape are scaled from the
values contained in the image buffer by the relation:

(tape value) = ((buffer value) + z) » g

where initially z=0.0 and §=1.0. These values. can be changed with the
‘ZERO’ and ‘SCALE’ keywords or will be computed for you if you use the
‘AUTO’ keyword., If you write a FITS style tape then these values are
recorded in the image header, and your image will be restored to the
original values when vead back with the RT command. (Some integer
truncation will always occur. } ‘ o

Examples:
1) WT 1 writes the image in.buffer i to tape.
2} WT %N |, writes the image in buffer N to tape, where

N is a variable.

3) WT 1 PDPB AUTO writes the image in buffer 1 %o tape in the
PDP8 format. The data on tape is scale to span
the full range from O to 4093,

4) WT 1 UNIT={ writes the image in buffer 1 to the tape that
" is mounted on unit 1.

9) "WT 1 SCALE=2. 0 ZERQ=0.0 - writes the image in BuFFer 1 to
tape, scaling the pixel values on the tape by
a factor of 2. '

Page 22

RD READ AN IMAGE FROM A DISK FILE

Form: RD dest filename .

where:

dest (iﬁteger or $contruct) is the buffer in which
- the image will be stored., and

filename (character string) is the name of the diskfile

holding the image.

The image will be read from the default directory for images (which
is either [CCD] or a directory specified by the DCL symbol V$CCDIR))
unless you specify otherwise on the command line. The file is assumed
.to have extension .CCD unless you specify otherwise.

Some examples of RD are:

1) RD 1 M92 ' :‘reads [CCDJM?E.CCDf_to buffer 1.
2) RD 7 CDEMOIM92 ~ rveads CDEMOIM92.CCD to buffer 7.
3) RD 3 M92.XYZ “ " peads LCCDIMP2.XYZ %o buffer 3.
4) RD $N M92 . . reads [CCDIMP2.CCD to buffer N, where
S) M is a variable.
WD WRITE AN IMAGE TO A DISK FILE
Form: . WD source filename
where:
source ' (intéger ar.$ construct) is the buffer holding
the image to be written, and
filename {character string) is the name of the file into

which the image will be written.

WD writes the image contained in buffer ‘dest’ to the specified file.

" The image will be written to the default directory for images {(which
is either CCCDI or a directory specified by the DCL symbol V$CCDIR)
unless you specify otherwise on the command line. I+ you do not give
a filename, the program will ask you for it. The file will be written
with extension .CCD unless you specify otherwise.

The files stored by the WD command count against the quota of
the account you are using when running VISTA.

Some examples of WD are:

Page 23

1) WD 1 M?2 writes buffer 1 to LCCDIMI2. CCD.
2) WD 7 LCDEMOIMI2 writes buffer 7 to C[DEMOIMF2. CCD.
3) WD 3 M92. XYZ writes buffer 3 to [CCDIMTP2. XYZ.
4) WD $N M2 writes buffer N to ECCDIMI2. CCD, whlere
' N is a variable. ; '
RTS READ A SPECTRUM FROM TAPE
Faorm: RTS dest spec_number LUNIT=nl
where:
dest _ (integer or % constuct) is the spectrum buffer
where the image will be stored,
spec_number (integer or variable or % construct)

is the number of the FITS $file on the magnetic
- : . tape, and ' '
UNIT=n : tells VISTA to read from drive n (integevr).

RTS will read a spectrum from a FITS style tape as produced by

the LSI-11‘s and VISTA. A spectrum is defined as a FITE file in which
there is only one axis coerdiante associated with the data. (In the
FITS header NAXIS is 1). FITS file numbers on tape start with image 1.
I+ ‘spec_number’ is not included on the command line then VISTA will
ask for the file number when the command is executed. If you are using
more than one tape, you can specify the unit with the ‘UNIT=’ keyword.
Unit O is MTAD: and uwunit 1 is MBAO: here at Lick Observatory.

Examples:
1y RTS8 1 3 reads the third file on the magnetic tape
" into spectrum buffer 1.
2y RTS 1 $TNUM . rteads file number TNUM on the magnetic tape
{where TNUM is a wvariable) into spectrum buffer
3) RTS %N O reads the fifth file on the magnetic tape in%o

spectrum buffer N, where N is a variable.

4y RTS8 2 5 UNIT=1 reads the fifth file on the magnetic tape that
is mounted on MBAG: into spectrum buffer 2.

Page 24

WTS WRITE A SPECTRUM TO TAPE

Form: WTS source L[ZERO=2] {SCALE=s] C[CAUTOI LCUNIT=nl

where:
source (integer or % construct) is the number of
the buffer holding the spectrum to be written,
ZERO=1z ad Jjusts the zero level of the image to z
SCALE=s scales the image by s (const. or variable}, and
AUTO computes best ZERO and SCALE to preserve the
best precision on the data tape,
UNIT=n writes to tape unit n (integer).

This command will write a spectrum to tape in the standard
LSI-11 FITS style. Spectra are always written at the end of the tape.
(To initialize a tape, use the ‘INT’ command.) When the spectrum has
been written out VISTA will pr1nt on the terminal the tape file number
into which it was written,

The spectrum pixel valuea written to the. tape are scaled from
the values contained in the image buffer bg the relation -

(tape value) = ((buf@er value) + z) #* s

where initially z=0.0 and s=1.0. These values can be changed with the
*ZERO’ and ‘SCALE’ keywords or will be caomputed for you if you use the
‘AUTO’ keyword. These values are recorded in the image header, and
your image will be restored to the original values when read back with
the RT command. {(Some integer truncation will always occur.} If you
use the ‘AUTD’ keyword the values on tape will be scaled to have the
range +32747 to -327&7.

Examples: _

1) WTS 1 writes the spectrum in buffer 1 to tape.

2) " WTE &N ~ writes the spectrum in buffer N to tape, uwbhere
N is a variable.

3) WTS 1 AUTO writes the spectrum in buffer 1 to tape;"{

scaling the data on tape to span the full
range from -—-327467 ta +32747.

4) WTS 1 UNIT=1 writes the spectrum in buffer 1 to the tape
that is mounted on unit 1. ,

Page 293

3) WTS 1 8CALE=2.0 ZERD=0.0 writes the spectrum in buffer 1 to
tape, scaling the pixel values on the tape by
a factor of 2.

=

RS READ A SPECTRUM FROM A DISK FILE
Form: RS dest filename
where:
dest (integer or % contruct) is the buffer in which
the spectrum will be stored.
filename (character string) is the name of the diskfile

holding the spectrum.

RS reads the spectrum contained in the specified £ile into buffer ‘dest’.
The image will be read from the default directory for spectra (which

is either LCCD. SPEC] or a dirvectory specified by the DCL symbol V$SPECDIR)
unless you specify otherwise on the command line. The filename is

assumed to have extension .8PC, unless you say otherwise.

Some examples of RS are:

1) RS 1 HD183143 " reads LCCD. SPECIHD183143. SPC to buffer 1.

2) RS 7 EDEMUJHEIBGIASl readsl[DEMDJHD18314B.SFC to buffer 7.
3) RE 3 HD1IB3143. XYZ reads L[CCD. SPECIHD183143. XYZ to buffer 3.
4} RS $N HD1B83143 - reads ECCD.SPEC]HD183143.SPC to buffer M
o where N is a variable.
WS WRITE A SPECTRUM TO A DISK FILE
Form: WS source filename |
wheve: |

source "~ (integer or % construct) is the buffer holding
- ' _the spectrum to be written. o

filename (character string) is the name of the file into
which the spectrum will be written.

WS writes the spectfum tontained in buffer ‘dest’ to the specified file.
The image will be written teo the defavlt directory for images (which
is either LCCD.SPEC] or a directory specified by the DCL symbol V4$SPECDIR)

Page 26

unless you specify otherwise on the command line.- The filename is
written with extension .8PC, unless you say atherwise.

the

The files stored by the WS command count aga1nst the quota ot
account you are using when running VISTA.

Some examples of WS are:

1) WS 1 HD183143 writes buffer 1 to [CCD. SPECIHD1B3143. SPC.
2) WS 7 LDEMOIHDiIB3143 writes buffer 7 to CDEMOIHD183143, SPC.

3) WS 3 HD1IB83143. XYZ writes buffer 3 to [CCD.SPECIHDIB3143. XYZ.
4) WS $N HD183143 writes buffer N to L[CCD. SPECIHD183183. SPC,
: where N is a variable.

coP COPY AN IMAGE FROM ONE BUFFER TO ANQTHER
Farm: COP dest source L[HOX=n]
-where:
- dest . (integer or % construct) is the buffer where the
‘ new image will be stored,
source (integer or % contsruct) is the original copy, and
BOX=n tells the program to copy only the part of the
. image that is in box ‘n-’. ‘
COP copies the image in buffer ’‘source’ to the buffer ‘dest’.
The header associated with the source image is also copied.
The syntax of the £opy command is:
COPY into {(dest) the image (source).
Examples:
1 - COP 2 1 - R copies the image in buffer 1 to
buffer 2, along with image 2’s header
and label. '
) COP $B A topies the image in buffer A to buffer B,
where A are B are variables.
3) COP i 2 BOX=7 _ copies the segment of image 2 that is

Page 27

with in box 7 inteo image buffer 1. The
size of the new image will be the size
of the box, See BOX for more details.

COPS COPY A SPECTRUM FROM ONE BUFFER TO ANOGTHER

Form: COPS dest source
where:
dest (integer or % construct) is the buffer where the

new spectrum will be stored.
source (integer or % contstruct) is the original copy
'CDPS copies the spectryum in buffer ‘source’ to buffer ‘dest”,
The header of spectrum ‘source’ is also copied. Any spectrum already
in buffer ‘dest’ is destroyed. Note that the destination spectrum

comes FIRSBT. The syntax of the command is

COPY into spectrum (dest) the spectrum (source).

Examples:
iy cops 21 - - copies the spectrum in buffer 1 to
' buffer 2, along with spectrum 1’s header
2) COPS %B %A ‘ _ copies the spectrum in buffer A to buffer B,
where A are B are symbolic constants.

BUF ‘ DISPLAY IMAGE HEADER INFORMATION
Form: BUF [buffers] L[FULLY [FITSC=paraml] Eoutpdt'redirection]

This command shows a brief summary of the header information
for the images contained in the image buffers. It specific buffers
are specified, the program lists information for only those buffers.
Otherwise, all buffers with images in them are listed. If the keyword

FULL is specified, a longer listing is given for. each _buffer. I# the = __ _.

keyword FITS=param is given then the literal text of the FITS header
is printed for the FITE header parameter ‘param?’. If you use Just the
keyword FITS (no specified parameter) and you use the FULL keyword
then all of the FITS header parameters will be shown.

Examples:

Page 2B

1) BUF Give a brief list of all buffers containing
images on the terminal.

2y BUF >iLF: Do the same, but send the ud@put ta the
lineprinter,

" 3} BUF FULL Give a long listing of the image buffers,
4y BUF 3 4 B8 FULL Give a long listing of buffers 3, 4, and 8,

9) BUF 3 FULL FITS List all the individual FITS header parameters
‘ and values for buffer 3,

BUFS DISPLAY SPECTRUM HEADER IMFORMATION
.Form: BUFS [buffersl CFULL] LFITSC=paraml] L[output redirectionl

Thig command shows a brief summary of the header information
for the spectra contained in the spectrum buffers. If specific buffers
are specified, the program lists information for only those buffers.
Otherwise, all buffers with spectra in them are listed. If the keyword
FULL is specified, a longer listing is given for each buffer. If the
keyword FITS=param is given then the literal text of the FITS header
is printed for the FITS header parameter ‘param’. If you use just the
keyword FITS (no specified parameter) and you use the FULL keyuword
then all of the FITE header parameters will be shouwn.

Examples:

1) BUFSV) Give a brief list of all buffers containing
- -spectra on the fterminal.

2) BUFS >LP: : Do the same, but send the output to the
‘ lineprinter. '

3) BUFS FULL Give a long listing of the spectrum buffers.

4) BUFS 3 4 8 FULL Give a long listing of buffers 3, 4, and 8.

5) BUFS 3 FULL FITS List all the individual FITS header parameters
’ and values for buffer 3.

INT START OR EDIT AM OUTPUT DATA TAPE
Form: IMNT image EUNIT=nl
whera:
image (integer or % construct? is the number where

the next image written on tape will have.

Page 29

UNIT tells VISTA which tape drive to use. UNIT=0
writes on MTO and UNIT=1 writes on MTi.
(MTQO = MTAO: and MT1 = MSAO: at Lick)

This command will write an end of velume mark in front of the .
specified ‘image’ file numbevr, hence deleting THAT IMAGE AND ALL PAST
IT on the tape. If you want to write an image at the end of an old
tape, you do not need to use the INT command. If an image number is
not specified, it is assumed that the tape is new and is to be
initialized for writing. In all cases INT will ask you to confirm
your command after it has positioned the tape:. but before it writes to
it.

Examples: Suppose there are 20 images on the tape, If the next image
written on that tape will be number 21, then you do not need to use
the INT command. :

1) INT 20 deletes the last image on tape. The next image

' - written will be number 20.-

2) INT 10 deletes the last eleven images on tape (10 - 20).
: The next image written will be number 10,

3 INT : delétes ALL images on the tape.

CLOSE CLEAR AND DISCONNECT AN IMAGE BUFFER

Farm: CLOSE dest
where: dest {integer or % construct)
is the image to be deleted.

This command will clear and disconnect the image in buffer
number ‘dest’ from VISTA. The memory needed to hold an image was not
assigned when the VISTA program was compiled: rather, it is requested
from the VAX when a new image is created. This run—-time memory . is termed
‘virtual memory. * The CLOSE command is used for freeing this memory when
the image is no longer needed or when VISTA has run out of memory for
setting up other image buffers. If you want to save the image, it
should be written to disk or tape first with the WD or WT commands
before closing out the buffer.

Examples:

1) CLOSE 7 "deletes image 7

Page 30

2) CLOSE 34 deletes image @, where Q@ is a variable.
(This form is helpful in procedures.)
Buggestions:

If you CLOSE images that you will no longer need. the VISTA
program may run faster, especially if there are many users on the VAX.
If you wish to close several files at once, it is helpful (but not
necesary) to close them in the opposite order from the erder in which
they were created.

The VISTA may sometimes respond with the message ‘No virtual
memory available’ when trying to create an image. To correct this,
close an image or two. This frees up more run—time memory, allowing you
to proceed.

CH i CHANGE IMAGE NAME

Form: CH dest new_name
where:
dest - {integer or % construct) is the number of the

imagg that is having its label thanged, and
new_name - (character string) is the new label.

This command allows youw the change the image label or name .of
the image held in buffer number ‘dest’. The new object name can be
given on the command line as shown or it can be supplied when the
command executes. If it is supplied on the command line then it must
be enclosed in quotes if it is more than one word long. I+ the new
name is not given on the command line then VISTA will type the current
ohjtect name and ask fovr the new name, If you respond with only a
carriage return then the old name is left unchanged. To force a blank
ob ject name you must enter at least one space character hefore the
carriage veturn. The image name is stored in upper case letters only.

Examples:
1) CH i HD1B3143. changes the name of image 1 to ‘HD183143°.
2) CH 1 ‘TEST IMAGE 2 changes the name of image 1 to
‘TEST IMAGE 2°.
3} CH $R ‘NEW LABEL changes the name of image R (where R
is a variable) to ‘NEW LABEL"’.
4) CH 1 changes the name of image 1. The old

name is printed. and VISTA asks you for

Page 31

the new name,

CHS CHANGE SPECTRUM NAME ' -
Form: CHS dest new_name
where:
dest f" (integer o;‘$ construct) is fhe number of the

spectrum that is having its label changed, and
new_name {character string) is the new label.

This command allows you the change the spectrum label or name of
the spectrum held in buffer number ‘dest’. The new object name tan be
given on the command line as shown or it can be supplied when the
command executes., If it is supplied on the command line then it must be
enclosed in quotes if it is more than one word long. If the new name is
not given on the command line then VISTA will type the current object
name and ask for the new name, If you respond with only a carriage
return then the old name. is left unchanged. To force a blank object
name you must enter at least one space character before the carriage
return. The spectrum name is stored in upper case letters only.

Examples:
1} CHS 1 HD183143 changes the name of spectrum 1 to ‘HD183143°.
2) CHs8 1 ‘TEST SPEC 2 . changes the name of spectrum 1 to
’ . - ‘TEST BPEC 2°. A
"3 CHS $R ‘NEW LABEL ' chénges the name of spectrum‘R (where R
iz a variable) to ‘NEW LABEL’.
4 CHS 1 changes the name of the spectrum in buffer

i, The pld name is printed, and VISTA
asks you for the new name.

Page 32

GET GET DATA FILE

SAVE SAVE DATA FILE
Form: SAVE [data_keyword=Cfilenamell Cother data keywords]
GET [data_keyword=Cfilenamel] ELother data keywordsl

where:

data_keyword is a mord specifying the type of data

: being saved or get (APER, MASK, PHOT,
or PROFILE},

filename is the name of the file that is holding
the data (GET) or will hold the
data (SAVE), and

other data kegwofds are used if you are getting bor saving

moTe than one data file at a time.

The SAVE and GET commands are used for writing out results
produced by other VISTA routines to disk for future use by VISTA or
other programs, and getting them back again, Various VISTA commands
will generate reduced data which you may want to save for later
- analysis. To SAVE or GET results from a specific program, specify
that program‘s keyword and a file name. If no file name is given,
VISTA will ask you for one. More than one keyword can be specified at
a time. By default, all files are kept in L[CCD. DATAl (or the
directory specified by the DCL symbol V$DATADIR) with the file
extensions given below. These can be overriden if desired. To
examine the current results that VISTA is storing, use the PRINT
command. :

At this time VISTA provides for the storage of the following:
data types: -

Keyword: APER=name Aperture photometry £ile ‘name(. APR)*
MASK=name Photometry mask file ‘name(. MSK)’
PHOT=name Stellar photemetry file ‘name(, PHO)’
PROFILE=name Surface photometry #ile ‘name(. PRF)’
' Examples:
1) GET PHOT=0RION loads the photometry file

[CCD. DATAJORION. PHO to VIETA

Page 33
2) GAVE MASK=MASKS : . writes the VISTA mask file
- to L[CCD. DATAIMASKS. MSK

3} GET PHOT=0ORION MASKﬂMASKB.ABC loads [CCD;DATAJDRIBN.PHU and
: CCCD. DATAIMASKS. ABC

PRINT PRINT DATA FILES, BPECTRA, OR IMAGE SUBSECTIONS
Form: PRINT Ldata kegwords& toutput redirectionl
where:
data keywaords specify which information is printed

This command will print out a formatted listing of reduced data
files, spectra or image subsections. The output from PRINT appears an
your terminal; to send it to the printer use the ‘>LP:’ construct.
PRINT recognizes the following keywords:

1) “‘image’ BOX=n | Print out the pixel values of ‘image’
in the subsection specified by box ‘n’ and
generate basic statistics on the pixels.

Examples: PRINT 1 BOX=2
‘ PRINT 2 BOX=7 >LP:
PRINT %G BOX=4 >IMAGESEC. DAT

2) BOX Print out the sizes, centers:, and origins
of all boxes defined.

' Forms: PRINT BOX
‘ PRINT BOX >LP:

3) S=n LCOLUMM] ' ?rint out the pixels in spectrum ‘n’.

Wavelengths are also printed if the spectrum

is on a wavelength scale. The COLUMN
keyword produces a single column output
which is useful for MONGD plotting package
input. '
_ _ EXAMPLES: PRINT S8=3
PRINT S=4 >LP:
PRINT S=2 COLUMN >SPEC. DAT

4) PROFILE ' Print out the surface photometry profile.

Examples: PRINT PROFILE

5) PHOT
&) APER
7) DIR
8) IM

91 SPEC
10) LINEID,
11) VAR

Page 334

PRINT PROFILE >LP:
Print out the stellar photometry results.

ar

Examples: PRINT PHOT
PRINT PHOT >PHOTLIST. DAT

Print out the aperture photometry results.

Examples: PRINT APER
PRINT APER >>APERLIST. DAT

Priﬁt the default directories.

Examples: PRINT DIR
FRINT DIR >LP:

Print headers for images in the default

- image directory. (Use PRINT DIR) to

see which directory this is)

Examples: PRINT iM
PRINT IM 2>IMLIST. DAT

Print headers for spectra in the default
spectrum directory. (Use PRINT DIR) to
see which directory this is)

Exampla: PRINT SPEC

Print wavelength v. pixel identifications
obtained with the LINEID command.

Example: PRINT LINEID
PRINT LINEID >LP:

Print list of all defined variables,

Examples: PRINT VAR
- PRINT VAR >VARLIST. DAT

Page 35

SETDIR SET DEFAULT DIRECTORIES AND FILE EXTENSIONS

Form: SETDIR code [DIR=directory_namel [EXT=extensionl

where: code specifies which directory is being set or changed
DIR= specifies a directory for the type of object
indicated by the code.

EXT= gives the extension for files in the defavult
directory - .-

SETDIR sets the default dirvectories and extensions of files
storing images., spectra, color maps, etc. You can see the default
values with the command PRINT DIR. Gee the section FILES (type
HELFP FILES if yau’re on a terminal’) for information about default
directories and extensions.

The DIR word gives the default directory for the type of
object specified by the code, and the EXT word gives the extension for
that tupe of object. An example of a defavlt extension is that for
‘,CCD’ for images. An example of a default directory is ‘[CCD. B8PECT”
for spectra. You must specify either the directory or the extension
~ov both with SETDIR. If the extension is not blank, it must include a
period as its first character: For example, ‘. XYZ’ is a valid
extension, while ‘FLK’ is not. :

The ‘code’ gives the directory which is being set or
changed. The code is derived from the ftype of object in the directory
you are specifying. You must type at least the first two letters
of the code: :

Ob ject: : Code - Abbfeviation

Images IMAGES IM
Spectra SPECTRA ' sP
Procedures PROCEDURES : . PR
Flux calibvation files FLUX FL.
Wavelength files WAVE WA
Color maps COLOR cao
Data files o DATA DA
Examples:

Suppose you see with PRINT DIR that the default directory
for CCD spectra is L[CCD. SPECI and the defawvlt extension is . 85PC’

1) SETDIR SP DIR=LMYDIR. SPEC]

Page 36

changes the default directory
to CMYDIR. SPEC]

2) SETDIR 8P EXT=. XYZ changes the default extension
, ' to ‘. XYZ'
3) SETDIR SP EXT=. XYZ DIR=[MYDIR. GPEC] changes both the

directory and extension at
one time.

Page 37

Television INTRODUCTION TO THE AED TELEVISION SYSTEM

The principle method for disblaqing images. is the AED
- television system. The AED (the large, flat box with a keyboard in the
VAX room) has three compaonents:

1) memory large enough to hold a 512 by 512 image,

2) a set of instructions for translating pixel value into
color (a ‘color map’), and 7 _

3} & cursor, allowing the user to visually select segments
of an image. § : .

An image is loaded into the AED with the ‘TV’ command. The colovr map
may be changed with the COULOR command.

There are several commands which avtomatically operate with the
image stored in the television. Such commands have no image specifier
on the command line. Frobably the most important of these is the ‘ITV”
command, which allows you to interactively examine an image in various
ways., When the AED is used with these commands, several keys on its
keyboard are defined so that they perform functions when struck. Any
AED—interactive command {including TV itself) has the following keys defined:

I : _zZopoms in, showing a smaller segment of the picture.
The center of the new picture is the location of

- the cursor when the ‘I’ key was struck.

o o zooms out, showing a larger segment of the picture,
The center of the new picture is the location of
the cursor when the ‘Q° key was struck.

P pans (i.e., moves) to another part of the picture.
The center of the new picture is the location of

' the cursor when the ‘P* key was struck.

R - ~Trestores the picture to the configuration it was in
when it was loaded. '

E exits the interactive program, returning the user
to the VISTA command mode. :

The various AED interactive routines also define other keys,
which perform functions unique to that program. Normally, the AED 'H'
key will list on your terminal the definitions for that program.
Examples of these interactive routines are ITV, MARKSTAR, PSF, and
FITSETAR, Besides the joystick, you never need to ftouch any of the AED
keys, except the letters A-Z and 0-9.

To operate the TV, (1) turn on the AED: the switch is in the
far left of the back pannel. (2) turn on the television monitor: the
switch is to the right of the screen. Remember to turn off both
systems when finished.

Page 38

TV WRITE AN IMAGE TO fHE AED VIDEO DISPLAY

Farm: TV sgurc Lspanl L[zerol [L=spanl Ez¥ieroJ {BOX=nl [CF=xxx1]
ENDLABELY CLEFT]Y [RIGHT1 C[NOERASE] C[OLD1 LBWI

where:

S0UTC (integer or ¢ contruct) is the image to be
displayed.,

span or L= set the span level far the color map.

zerag or I= set the zero level,

BOX=n displays the part of the image in box ‘m’,

CF _ specifies the color map.

NOL.ABEL suppresses labeling of the image,

LEFT, RIGHT .are used for blink comparison,

NOERASE prevents the TV from erasing the previous image
when displaying a new one (used for blinking).

oLD displays using previosly defined parameters,

BW displays the image in black and white.

This routine will display the image ‘sourc’ on the AED video
display. The pixels are translated for display by first subtracting the
‘zero’ level and loading the result modulo the intensity ’‘span’ range.
By default, ‘zero’ is ‘0’ and ‘span’-is four times the image mean.
(Important: TV does not calculate the mean: so you must use the MN
command first if you want to vse the default span.) These are default
values good for low background astronomical images, but you should
experiment with the zero and span, since careful choice of these
parameters can enhance or suppress various features present in the
image. The ‘span’ and ‘zevro’ values can be specified either as an
ordered pair of real numbers (notice that ‘span’ precedes “zero’} or
with the L and Z keywords. Pixels less than the zero level are
displayed as zeros. '

CF=filename loads the color map that translates the pixel values
into color. ‘BW’ loads a black and white color map. Unce the map is
loaded:, it remains in use until changed by the COLOR or ITV commands, or
is reluaded with the CF keyword., The available color maps are;

CE=WRME . .. (thought by many to be the most useful)
CF=RAIN (the color distribution in a rainbow)
CF=1BW {(inverse black and white?}

You can define new color maps with the COLOR command.

The keyword ‘OLD’ tells the routine to re—use the last set of
parameters. The ‘BOX=n‘’ keyword specifies that only the image suvbsection
in box ‘n’ (see BOX command) is to be displayed.

The displayed image is shown with its header, a color bar
showing the translation from values to color, and a set of labeled tick

Page 39

marks to mark the image’s rows and columns. This annotation can be
suppressed with the NOLABEL keyword. The routine automatically zooms
into the image center so that the it fills as much of the screen as
possible., Once the image is displayed, its parameters are held in a
common block so that other routines can be called from VISTA to interact
with it '

The AED display can be used as a digital blink compariter, and
the LEFT and RIGHT keywords have been provided for this purpose. “When
either are given the AED screen is divided into equal left and right
halves and the image is placed in the specified half, When the LEFT
keyword is given the entive screen is cleared (unless the NOERASE
keyword is given) before the image is put up on the screen. An example
of the normal seguence for loading two images for blink comparison is
shown below. This option is very useful for examining #ields for
variable stars as well as comparing processed and unprocessed images.

The AED can display a maximum of 512 rows and 512 columns, or '
2 sets of 512 rows and 254 coluans if the blink option is used. Images
larger than this will be compressed before being displayed.

Examples:.
1y MN 1 .o
TV 1 CF=WRMB) loads image 1 into the AED, setting the
' span to be 4 times the image mean.
2) TV 3 100. 30.0 loads image 3 into the AED, setting the
span to be 100 and the zero to be 30.
3y TV 3 L=100. Z=30. does the same thing as example 2
4y TV 7 NAOLABEL loads image 7, suppressing the labeling
5) TV 7 NOLABEL BW does the same as examplelb. but showing
the image in black and white.
&) MN 1
TV 1 CF=WRMB LEFT
TV 2 RIGHT OLD. is an example of the normal sequence for
loading images 1 and 2 for blink
- compavison. - The first command sets the

span. The second loads the left half of
the image, while the third loads the
right half, using the old span and

zevro, :

Page 40

ItV INTERACT WITH AN IMAGE DISPLAYED ON THE AED

Form: ITV

This routine enables you to interactively examine an image
displayed on the AED video display. Upon calling this routine, the AED
cursor is activated, and can be moved around the image with the
Joystick., GSeveral keys on the AED are activated to perform functions
when struck:

Blink between two images with the Joystick

Use the joystick to roll through the color map
Type out selected pixel Tow, column, and value
Exit ta VISTA

Print this list

Zoom in to coursorvr

Zoom out of cursor

Pan over to cursor

Restore image to center

ATO-IMOoOOIE

The D key prints pixel values taken from the displayed image’s
original data buffer; therefore, so be careful to note if the image has
been modified after being displayed. The D key also loads the
coordinates of the most recently selected pixel into VISBTA variables R
‘and C. If the image had to be compressed to fit in the AED, the ‘D’
key will not show every pixel. I# you want to look at individual pixels
in & compressed image, use the BOX word in the TV tommand to display
smaller sections of the image.

The B key will cause the AED to rapidly hlxnk between two images
which have been displayed vusing the TV command and the LEFT and RIGHY
keywords. Note that the D function does not work with such images.
Move the joy stick up and down to control the rate of the blink or
left and right to just display the left or rxght image. Hit any key to
stop the blinking.

The C key enables you to roll the color map up or down through
the displayed intensity range by moving the joystick up or down, This
enables you to highlight subtle features or transitionse in the image by
quickly positioning sharp changes in color at any desired intensity.
Hit any key to stpp the color map roll.
COL.OR i.OAD A COLOR MAP INTO THE AED VIDEO DISPLAY

Form: COLOR [CF=filenamel L[BWI CINV]

where:

CF= loads an already—-defined map into the AED,

Page 41

B loads a black -and white map, and
INY inverts the ordering of the map.

This routine is used to change or define new color maps for
translating displayed pixel intensities into color. The new map is
entered without reloading the image. '

The color map is a list of length 256, each entry of which holds
three numbers. These entries are called ‘levels’, and code the gun
intensity for the red, green:. and blue guns in the TV: their values run
from O to 255. The 256 entries show the proportions of these colors to
use to display each of the 256 intervals of intensity between each
‘gspan’, or contour interval in the TV picture. COLOR defines these
numbers, either by loading them from a pre-determined list, or by
creating a new ligé.- :

If you wish to create a new list, type the command ‘COLOR“ with
no options. The program will ask you to define the proportions of red.
green, and blue intensity to use for each of the entries in the color
map. The entries are numbered from O to 233, "The proportions of each
colar are linear functions of entry number. You define a starting entry
number and value, and an ending entry number and value. You may chain
several linear segments together to produce various effects in the color
map. You must define all 256 entries .in the map. :

The last thing the COLOR program will ask you, is to specify the
color of the label and tick marks. '

As an example of defining a coler map, consider the black and
white map. For each level of intensity, the proportions of red, green
and blue are equal, We want increasing brightness to correspond to
higher intensity: so each color should have zero intensity at the bottom
of the map, and full intensity (255) at the top of the map. The
sequence of responses for defining this color map would be:

COLOR ' (begins the'sequence)
Red: starting level O enter initial value: 0 .
Gog to level . - 288

with intensity - - 258

Green: starting level O enter initial value: O

Go to level ‘ 255

with intensity 255

Blue: starting level O enter initial value: O

Go to level 259

with intensity _ 255

Define label intensities: Red: : 200

Green: 230

Page 42

Blue: : o0

Save coloaor file: Y or N .

In this example, all three colors have zero intensity at &he
bottom level of the color file, and full intensity at the top level. The
label color is green with slightly less red, with a tinge of blue.

VTEC PRINT AN IMAGE ON THE VERSATEC
Form: VTEC sourc L[spanl Lzerol [L=spanl] [Z=zerol L[BOX=nl
- COLD1 CINV]
wherea:
sourc (integer or % contruct) is the image to be
: displayed,
span or L= set the span level for the color map.
zero or I= set the zevo level,
BOX=n : displays the part of the image in box ‘n’,
aLp o ‘ displays using previosly defined parameters, and
INY .1nverts black and white in the output.

This routine will prlnt the image ‘sourc’ on the Versatec
printer. The pixels are translated for display by first subtracting the
‘zero’ level and loading the result modulo the intensity ‘span’ range.
By default, ‘zero’ is ‘0’ and ‘span’ is four times the image mean.
(Important: WVTEC does not calculate the mean, so you must use the MN
command first if you want to use the default span.) These are default
values are good for low-background astronomical images, but you should
experiment with the zero and span., since careful chaoice of these
parameters can enhance or suppress various features present in the
image. The ‘span’ and ’‘zero’ values tan be specified either as an
ordered pair of real numbers (notice that ‘span’ precedes ‘zero’) or
with the L and Z keywords. Pixels less than the zero level are
displayed as zeros.

The keyword ‘OLD’ tells the routine to re-use the last set of
parameters. The ‘BOX=n’ keyword specifies that only the 1mage subsect1nn
in box ‘n’ (see BOX command) is to be dlsplaged :

VTEC usually prints objects as dark on a 11ght background.
To reverse this, use the INY keyword.

Examples:
1) MN 1
VTEC 1 prints image 1, setting the

span to be 4 times the image mean.

2) VIEC 3 100. 30.0 prints image 3 intu the AED, setting the

Page 43

span te be 100 and the zero to be 30.
3) VTEC 3 L=100. Z=30. does the same thing as example 2
4) VTEC 3 BOX=4 INV prints the section of image 3 that is

in box 4, showing light objects against
a dark background.

PIC PRODUCE A GREYSCALE PICTURE ON A VT100
Form: PIC sourc L[spanl [zerol [L=spanl {Z=zerol C[BOX=nl
CNOERASE] L[OLDI CINVI EINTI
where:
. sourc (integer or % contruct) is the image to be
: displayed,
span or L= set the span level for the color map.
zero or I= - set the zero level,
BOX=n displays the part of the image in box ‘n’,
NOERASE prevents the program from erasing the previous image
" when displaying a new one,
aLp displays using previosly defined parameters,
INY B o produces light objects against a dark
‘ background, and
INT - allows you to examine pixel values with a cursor.

This routine will display the image ‘sourc’ on a VT100 ,
‘Retrographics’ terminal. The pixels are translated for display by
first subtracting the ‘zero’ level and lecading the result modulo the
intensity ‘spen’ vrange. By defaults ‘zero’ is ‘0’ and ’‘span’ is four
times the image mean. (Important: PIC does not calculate the mean,
s0 you must use the MN command first if you want to use the default
span.) These are default values good for low background astronomical
images, but you should experiment with the zere and span, since
careful choice of these parameters can enhance or suppress various
features present in the image. The ‘span’ and ‘zevo’ values can be
speciFied either as an ordered pair of real numbers (notice that

‘span’ precedes ‘zero’) ov with the L and Z kegwurds Pixels less
than the zero Ievel are displayed as zeros. R e

The keqmord ‘OLD° tells the routine to re—-use the last set of
parameters. The ‘BOX=n’ keyword specifies that only the image

subsection in-box ‘n’ (see BOX command) is %o be displayed. If you
type INT, PIC will give you a cursor. You can move this cursor
around with the ‘arrow’ keys on the terminal. I you hit any key

(except ‘Q‘): the row column, and value of the pixel closest to the
cursor is displayed at the bottom of the plot. ‘Q’ exits from PIC.
If you hit the keys O to 9, the vow and column position at the cursor
are loaded into the variables Rn and Cn, where ‘n’ is the key struck.

Page 44

Examples:
1} MN i . _
PIC 1 displays image 1, sétting the

span to be 4 times the image mean.

2) PIC 3 100, 30.0 : displays image 3:; setting the
span to be 100 and the zero to be 30.

3) PIC 3 L=100. Z=30. does the same thing as example 2

4) PIC 3 BOX=4 INV displays the section of image 3 that is
in box 4, showing light objects against
a dark background. '

LINE PLOT A SELECTED ROW, COLUMN, OR SPECTRUM (INTERACTIVE)

Furmf LINE sourc [BOX=bl [R=nl CC=nl] [S=nl [MIN=f] LHMAX=f]
LXS=+1 [XE=f1 C[OLD] :

where:

soure: (integer or % contruct) is the image from
! which rows or columns will be selected,

BOX=h limits the image ‘sourc’ to box ‘b’,

R=n, &=n - plots the selected row or column,

S=n plots spectrum n, :

MIN, MaAX select limits for y—axis of plot,

X8, XE select limits for x-axis of plot, and

oLD uses parameters from previous plot.

1

This command will produce a plot of a selected row column.
or spectrum. It is similar to the PLOT command, but this command
will produce a plot which you can intevact with. On the other hand,
the PLOT command will produce a labeled plot more suitable for hard
output. The index ‘sourc’ specifies which of the image buffers
contains the image for plotting a row or column. No ‘sourc’ is needed
to plot a spectrum. The optional index ‘box’ specifies one of the 10
available boxes (see BOX command) to be used to select a sub—section
of an image. Row ‘n’ is displayed by using the option R=n, column ’'n-’
by vusing the C=n option, and spectrum buffer ‘n’ by using the S=n
optiaon. ‘

Mormally the endpoints of the x— and y—axes are selected in
this way: The x~axis runs over the entire row, column, or spectrum
selected. The y—axis runs from the minimum to the maximum value of
the row, column, or spectrum being plotted. This scaling can be
overridden by the MAX and MIN keywords for the vertical axis and X8
and XE for the horizontal. XS and XE refer to the starting and
ending X values in pixels or angstroms. The OLD keyword will produce
a plot using the last used set of parameters.

Page 45

This command continues in interactive mode until the RETURN
key is hit. While the command is still active the cursor can be
moved about using the left— and right-arrow keys. The up- and douwn—
arrow keys cause the plot to be redrawn with the cursor centered on
the screen. The plot can also be magnified with the following keys:
PFi= increase Y mag, PF2=decrease Y mag, PF3=increase X mag,
PF4=decrease X mag. (Note: Increasing Y mag too much produces bad
results.)

Examples:

1) LINE 1 R=100 Plots row 100 of image 1.

2) LINE 1 R=100 MIN=0. MAX=100. Plots row 100 of image 1,
' with y—axis running from 0. to 100.

Plats row 4 of image 4,
where the x—- axis Tuns over columns
20 through 45. - .

3} LINE 4 XS5=20 XE=405 R=4

4) LINE 8=4 . Plot spectrum 4.
PLOT ' PLOT A SECIFIED ROW, COLUMN OR SPECTRUM (NON-INTERACTIVE)
Form: PLOT sourc [S=nl [BOX=b1 [R=nl [C=nl [RS=(nl,n2)]

ECS=(ni, n2)] [MIN=£1 CMAX=f1 [XS=£1 [XE=f]
LGRID] CINFOJ [SEMILOG] £LOG] C[OLDI CHARDI

where:

souTct (integer or % contiuct) is the image from
which rows or columns will be selected,

BOX=b limits the image ‘sourc’ to box ‘b7

R=n, {=n plots the selected row or column.

RS=(nl, n2) plots sum of selected rows.

Cs=(nl:n2) plots sum of selected columns

S=n plots spectrum n instead of an image.

MIN, MAX selact limits for y—axis of plot,

X8, XE gplect limits for x—axis of plot., -~ - -~

GRID produces a full plot grid intead of Just
tick marks around the edges of the plot,

INFO puts additional about the data on the plot

SEMILOG plots log(y} against x,

L0G plots log(y) against log(x).

aL.n vses parameters from previous plot, and

HARD sends the output to the VERSATEC.

This command will produce a plot of a selected Tow coluymn,

or spectrum. It is similar to the LINE command, but this command
will produce a labeled plot more suitable for hard output, and
cannot be used to interactively examine the plot. On the other hand,

Page 46

the LINE command is more &suited to interactive line examination:
since PLOT has no interactive cursor or scale control,

The index ‘sourc’ specifieg which of the image buffers
contains the image for plotting a row or column. No ‘sourc’ is needed
to plot a spectrum. The optional index ‘box’ specifies one of the 10
available boxes (see BOX command) to be used to select a sub- section
of an image. Row ‘n’ is displayed by using the aption R=n, column ‘n’
by using the C=n option, and spectrum buffer ‘n’ by using the S=n
option. The RS and CS keywords are used to dzsplau the sum of the
selected Tows or columns in an image.

Normallg the endpoints of the x~ and y~axes are selected in
this way: The %—axis runs over the entire row, column, or spectrum
selected. The minimum and maximum y-values define the corresponding
limtis for the y—axis. This scaling can be overidden by the MAX and
MIN keywords for the vertical axis and XS and XE for the horizontal.
XS and XE refer to the starting and ending X values in pixels (or
Angstroms for & spectrum that has had its wavelength scale :
determined.)

The keyword GRID will produce a3 coordinate grid on the plot.
This is very vuseful if you are trying to make measurements fraom a
hard capy plot. The keyword INFO will put some additional information
onto the plot. The keqywords LOG and SEMILOG will produce log vs, _
log or log vs. linear plots as desired. The OLD keyword will produce
"a plot using the last used set of parameters HARD will send the
output to the VERSATEC.

Examples:

1

1) . PLOT 1 R=100 Plots row 100 of image 1.

2) PLOT 1 RS8=(100, 120} MIN=0. MAX=100. Plots sum of rous 100 te
120 of image 1. with y—-axis running
fram O. to 100,

3) PLOT 4 X5=20 XE=43 R=4 Plots row 4 of image 4,
: - where the x— axis runs over columns
20 through 45. R S

4) PLOT 4 QLD SEMILOE Plot the old graph (whateverlit was)
in semi~log format.

S) PLOT S=4 Plot spectrum 4.

"Page 47

CONTOUR MAKE CONTOUR PLOT OF IMAGE OR IMAGE SUB-SECTION
Farm: CONTOUR source [BOX=bl [8CALE=sg] -
CLEVELS=(L1,L2,L3,...)] [HARD1
where;:
souTrCce , (integer or % contruct) is the image to be
plotted.
BOX=b tells the program to plot eonly the part of
‘ the image in box ‘b’.
SCALE=s B sets the plot scale to ‘s’ units/pixel
(typically arcsec/pixell.
" LEVELS= sats the levels of the plot.
HARD ‘ sends the output to the Versatec printer.

This program produces a contour plot of an image or an image
sub—section. The program is still under develnpment moTe options
will be added later.

I# the levels are not specified, the program computes its
owni. The lowest contour is the mean of the image in the area being
plotted; higher contours are 0.5 magnitude (a factor of 1.3583) apart.
This turns our to be useful for a wide variety of astronomical .
applications. Use the LEVELS keyword to define contour levels, if you
wish, You can have up to 20 levels.

The SCALE keyword sets the scale of the axes in units/pixel,.
If you leave this out, the scale is in row and column numbers.

The contours produced by MONGO are unlabeled, and there is no
way to differentiate peaks from valleys. The plot is made as large
as will f£it on a VTi00 screen if sent to a terminal; it sent to the
printer, the plot is made as large as will conveniently fit on an 8.5
by 11 1nch sheet.

Examples: : ~

1} CONTOUR 1 Plots all of image 1. The
) contour levels are set in the
program,
2} CONTOUR 2 HARD Does the same as example 1,
. . but sends the output to the
Yersatec.
3) CONTOUR 1 BOX=3 Does the same as example 1,

but plots only €the part of

FPage 48

the image in box 3.

4) CONTOUR 1 LEVELS=(10, 20, 30, 40, 50) An example of setting the
levels. -
cL CLEAN VT100 SCREEN OF TEXT ANMD GRAPHICS
Faorm: CL

The VTL100 screen is cleared of ail text and graphics.

Page 4%

Al ADD TWO IMAGES :
1=} SUBTRACT TWO IMAGES
DI DIVIDE TWO IMAGES .
MI MULTIPLY TWO IMAGES

The commands that perform arithmetic between twp images are:

- Al dest source [BOX=nl] [DR=nl [DC=nl] (dest=dest+source)
81 dest source [BOX=nl [DR=nl C[DC=nl] [DARK] (dest=dest~[Ts/TdlI#source)
DI dest source LC[BOX=nl] [DR=nl [DC=nl [FLAT] (dest=dest/sourcel#*source meanl)

MI dest source [BOX=nl C[DR=nl] ELDC=nl (dest=dasti#source)
where:
dest (integer or % contruct) is the buffer

holding one image and alsno specifying
the buffer where the rTesult will be stored,

souvrce {integer or % contruct) is the other
image used in the arithmetic,

BOX=n uses onliy that portion of# the source image
' that is in box “‘n’,

DR, DC ‘ shifts the ‘source’ image before doing the
R arithmetic. .

NMote that the result af the arithmetic operation is stored
in the first location mentioned on the command line! The syntax of
these commands is

OPERATE ON (image 1) WITH (image 2}

The operations are done on a pixel—-by-pixel basis so that
pixel (I,J) of the ‘dest’ image is combined with pixel (I,J) of the
‘source’ image. ‘DR’ and ‘DC’ can be used to specify an optional
offset in number of rows or columns of the source image when it
operates on the destination. ‘DR’ and ‘DC’ can be negative as well as
positive, but will be rounded to the nearest integer. The result is
that row ‘I’ and column ‘J’ of the source operates on row ’'I+DR’ and
column ‘J+DC’ of the destination.

Page 50

IMPORTANT: I# the images do not overlap exactly., only those
pixels in the destination image that are also in the source image are
effected by the operation. The other pixels are not changed!

I# the optional keyword FLAT is included in the DI command,
the resulting image is multiplied by the mean of the image in the
‘gsource’ buffer. The mean is NOT computed by the DI command, but
must be computed with the MN command ahead of time. If the optional
keyword DARK is included on SI command line, then the source image is
scaled by its exposure time relative to the destination image before
the subtraction. These twe operations preserve the mean of the
destination image. o '

You can make an image which contains nothing but zeroes by
subtracting it from itself.

Examples:
CAI 2 1 | adds image i to image 2 and stores the
. result in image 2.
DI 2 3 FLAT .- divides image 2 by image 3, then scales

the result by the mean of image 3. This
preserves the mean of image 2.

AL 4 7 DR=4 DC=-10 ‘add image 7 to image 4, but first shift
image 7 by 4 rows and by -10 columns.
The pixels in image 4 that are also in
image 7 will contain the sum. The
pixels in image 4 that ave NOT in
! image 7 will not be changed.

Al $IM1 $IM2 add image IM2 to IMl, whevre IMI and IMZ
are variables. (This is helpful in
procedures.) :

AC " ADD A CONSTANT TO AN IMAGE

=1 SUBTRACT A CONSTANT FROM AN IMAGE
MG MULTIPLY AN IMAGE BY A CONSTANT
DC ~__ DIVIDE AN IMAGE BY A CONSTANT

The commends that perform arithmetic between an image and a
constant are: '

Al dest number (dest=dest-t+tnumber)
SC dest number (dest=dest~-number)
DC dest number (dest=dest/number)
MC dest number (dest=dest#¥number)

'dest‘ specifies the buffer that contains the image to be processed
and ‘number’ is the value to be used. The operation is applied to

Page 51

gach pixel in the image.

‘number’ can either be an explicit numeric value or a defined
symbol (see SET command). I# ‘number’ is not included on the command
line then VISTA will request a numeric value (not a symbol) when the
command is executed. The program will also ask you for a number if
the value of the variable constant (if you use one) is zero. I+ you
want to make an image zero, you cannot multiply it by the constant
0.0: you have to subtract the image from itself.

Examples:

1} AC 7 4 03 adds 4. 03 to image 7

2y AC 7 BIAS adds the value of the variable BIAS to
‘ image 7. This does the same thing as

example 1 if BIAS equals 4. 03.

3) DC $J 2.0 ‘divides image J (J a variable) by 2.0

AS . ADD TWO SPECTRA

88 SUBTRACT TWO SPECTRA

S - : MULTIPLY TWO SPECTRA

DS - DIVIDE TWO SPECTRA

The commands that perform arithmetic between two spectra are:

AS dest source [DC=nl LFLATI (dest#dest+source -fgource meanl)
8S dest source [DC=nl] LFLATJ] (dest=dest-source +[Csource meanl)
MS dest source L[DC=nl LFLATI (dest=dest#source /Lsource meanl)

DS dest source [DC=nl L[FLAT] (dest=dest/source #*#[source meanl])

‘dest”’ and ‘source’ specify the spectra (1 to 20) to be used in the
gperation. ‘DC’ can be used to specify an optional positive or
negative offseft in number of pixels in the source spectrum when it
cperates on the destination spectrum. The result is that pixel ‘J° of
the gsource operates on pixel ‘J+DC’ of the destination. If the two
spectra do not overlap exactly, only those pixels common to both
spectra are added: the rest are not changed!

I+ the optional keyword [FLAT] is specified, the arithmetic
operation will preserve the destination spectrum’s mean.

Page 352

Examples:

1) A5 3 6 adds spectrum & to spectrum 3,
storing the result in spectrum 3.

2) AS 3 &6 DR=-12 does the same as above, but first

: shifting spectrum & left by 12
pixels. Only the pixels common to
hoth spectra are added.

3) MS #81 82 multiplies spectrum 81 by SQ. where
S1 and 82 are variables. (This is
helpful in procedures).

4) 85 1 2 FLAT subtracts spectrum 2 from spectrum 1,

: adding the mean of spectrum 2 to the
~result, thereby preserving the mean
of spectrum 1. - _ :

ACS : ADD CONSTANT TO SPECTRUM .

8CS . ~ SUBTRACT CONSTANT FROM SPECTRUM

MCS MULTIPLY SPECTRUM BY CONSTANT

- DC8 - DIVIDE -SPECTRUM BY CONSTANT

The commands that_pér?arm afitﬁMefic between a spectrum and
a number are: ’

ACS dest number (dest=dest+number)
8CS dest number (dest=dest~number)
MCS dest number (dest=dest#number}
DCS dest number (dest=dest/number}

‘dest’ specifies the spectrum to be processed and ‘number’ is the
value to be vused in the operation. '

‘number’ can either be an explicit numeric value or a defined
symbol (see SET command). I+ ‘number’ is not included on the command
line then VISTA will request a numeric value (not a symbol) when the
command is executed.

Examples:

1y ACS 7 4.03 adds 4.03 to spectrum 7

Page 53

2) ACS 7 BIAS " adds the value of the variable BIAS
' to spectrum 7. This does the same
thing as example 1 if BIAS equals 4.0

3) DCS J 2.0 ‘ divides spectrum J (J a variable) by
: 2,0

Page 54

BOX DEFINE A BOX OR IMAGE SUBSECTION

Form: BOX box_num ENC=nJ [LNR=nl1 LCR=n] CCC=nl] [SR=nl] [BC=ni]

where:

box_num (integer) is the number of the box being
defined, :

NC defines the number of columns in the box,

NR detines the number of rows in the box,

CR defines the center row,

CC defines the center column,

ER : defines the starting row, and

sC defines the starting column.

To permit analysis on sub-sections of an image VISTA can
store up to 10 sets of specifications for image sub-sections (or
boxes). These stored parameters can be used by other commands (such
as TV, WIND and PRINT) by including 'BOX=‘ in the command line,
modifying these commands so they operate only -on the designated
subsection. ' ’

When.a box is initially defined:. the size of the box in both
dimensions and its origin or center must be specified. Bubsequently,
however, if any of the box parameters are to be changed. only the
modifications need to be entered. The locations of the defined boxes
can be found with the PRINT BOX command. '

Examples:
1y BOX 1 SC=100 NC=100 SR=0 NR=10Q0 defines box 1 as columns
100_to 1992 and rows 0 to 9%
2 BOX 2 CC=100 CR=100 NRzié NC=13 defines a box having 13 rows
' and columns: centered on
Tow=100 and column=100.

M COMPUTE MEAN OF THE PIXEL VALUES IN AN IMAGE

Form: MN spurce CNOBLI] B B

The mean of all the pixels in the image contained in buffer
‘source’ is computed. If the keyword NOBL is included then the
baseline column (the last column of the image} is not included in the
computation. The computed mean value is printed at the terminal and
is also loaded intp the VISTA variable Mbn: where ‘bn’ is the image
buffer number. (ex: the command MN 1 loads the wvariable M1).

The mean is used by other commands such as the TV command for

Page 55

a default display range, or the DI command for rescaling images after
flat—field divisions., The VISTA mean variables are always defined,
but are set to zero if the image mean has not been calculated.

FLIP CHANGE THE ORINETATION OF AN IMAGE

Form: FLLIP source L[ROWS]1 £COLS]

This command ‘£#lips’ an image in either rows or columns.
Use this command to change the orientation of an image so that it
matcthes the way it is viewed on the sky or on a finding chart, or
to get the wavelength dispersion running the way you want before
using MASH.

A flip in ROWS reverses the image top to bottom as seen on the
television. A f£lip in columns reversed the image left to right.

Examples:

FLIP 3 ROWS Inverts image 3 top to bottom.
FLIP. 3 COLS Inverts image 3 left to right.

SKY o MEASURE THE ‘SKY’ OR BACKGROUND LEVEL OF AN IMAGE

Form: SKY source tBUX=nJ

where:

spurce (integer or % contruct) is the number of the
image that BKY works on.

BOX=n ' tells SKY to work only box=n.

This routine finds the sky background level of an image under
the assumption that the most common pixel intensity in the image is
the level of the ’‘sky’ or background. This i a nonlinear algorithm
which is largely insensitive to bright objects in the image. The
“poutine calculates the mean of the image ‘source’, and builds a
histogram of pixel intensities about the mean., The region of the
peak value is located in the histogram, and is fift with a parabola to
find its precise location. This intensity value is defined to be the
sky value, and is loaded into the VISTA variable ‘SKY’ for access by
other commands.

The use of a box may be helpful if a large fraction of the image is
occupied by stars or an extended object, causing the Toutine to
measure a sky level systematically higher than the true level. The
box can in this case be used to select a region of the image that
does not have bright objects in it

Examples:

1) 8KY & finds the background in image 5. loading

Page D6

its value into the variable SRY,

2) BKY $W BOX=S ~does the same as example 1, but finds

the background only within box number W.
ABX ANALYZE THE IMAGE WITHIN A BOX
Form: ABX source boxes [TOTAL=varl CMEAN=varl CHIGH=varl

[LOW=var] CHIGH_ROW=varl [HIGH_COL=var]
[LOW_ROW=varl CLOW_COL=varl ESIGMA-varl (redirection)

Where:
spurce (integer of % contruct) specifies the image.
boxes list boxes to be used in the analysis

var the name af a variable,

ABX finds the properties of an image in a given box or a set of

boxes. If you do not specify a box, all defined boxes are used.

The boxes are specified by integers, and NOT with the BOX= word as in.
other commande. Thus, for example -

ABX 3 Finds the properties of image 3 in all boxes.
aBx 3 1 Finds the properties of image 3 in box 1
ABX 2 3 4 5 6 - Ananyzes image 2 in boxes 3: 4, 5, and b

ABX $inds the image mean, total count over all pixels:. valuves
of the highest and lowest pixels, location of the highest and lowest
pixels, and the standard deviation of the counts in the pixels about
the mean. A table of the rvesults is printed on the output device.

ABX will store the values for the various properties of the
image in variables if certain keywords are included on the command
line.

TOTAL=var Stores the total count of all the pixels in ‘var’

MEAN=var Stores the average of the image

HIBH=var Stores the VALUE of the pixel with the highest count

LOW=var . Stores the VALUE of the pixel with the lowest count

HIGH_ROW=var Stores the rTow number in which the highest-valued

: o pixel is located

HIGH_COL=var Stores the column number in whxch the highest-valued
pixel is located

LOW_ROW=var Stores the row number in which the lowest-valued
pixel is located.

LOW_COL=var Stores the column number in which the lowest-valued

pixel is located.
SIGMA=var Stores the standard deviation of the pixel values

Page 57

about the mean.
Examples of storing information in variables are:

ABX 1 3 MEAN=M3 SIGMA=SIG3 Analyzes image 1 in box 3, storing
the mean in variable M3 and the
standard deviation in SIG3.

ABX 2 7 HIGH_ROW=HMR HIGH_COL=HC Analyzes image 2 in box 7, storing
the location of the highest-~valued
pixel in HR and HC

The use of the variab1e~sétting keywords should be used only
when you analyze an image one box at a time, as the values will be .
loaded into the variables only for the last box analyzed.

HIST - DISPLAY HISTOGRAM OF IMAGE VALUES

Form: HIST source L[BOX=b]l [BIN=nl CXMIN=x11 L[XMAX=x21]
CYMIN=y11 LYMAX=y2]1 [HARD] L[NOLOGI]

where: source A (integer.u# % construct) is the image

BOX=b) limits the computation to those pixels in box . ‘b’.
BIN=n bhins the image values by the specified factor
XMIN, XMAX limits the computation to those pixels with

' values between xi and x2, inclusive.
YMIN, YMaX limits the display of the histogram on the Y-

axis to be from yl o y2.

HARD sends the plot to the hardcopy device.
NOLOG | displays the number of pixels at each

intensity, rather than the logarithm.

This program displays a histogram of an image, plotting the
logarxthm of the number of pixels at each value far the image
‘source’

Use the BIN word to specify how wide the intensity intervals

show in the plot is to be. Normally the binning factor is 1., meaning
that the plot displayed is the logarithm of the number of pixel values
at each intensity (the image values are converted to integers). ~ If
the bin faector is non—zero, the display is the log of the number in
larger bins. For example, if the bin was 5, then the plot shows the
number of pixels with intensity 0 - 4, 5 - 9, 10 -~ 14, 13 - 19, etec.
If there is a large range in intensities, the BIN word should be used
to keep the plot from having so many points that it looks like hash.

The BOX wbrd limits the talcuation to those pixels in the
specified box. The XMIN and XMAX wovrds limit the calculation to those

Page 5B

pixels in the specified intensity range. If XMIN is not given, the
lower limit will be the minimum pixel value in the image. If XMAX is
not given, the upper limit will be the maximum pixel value in the
image. ' ’

The YMIN and YMAX words, by contrast, limit the DISPLAY of the.
histogram so that the Y—axis runs over the given range. These words
do not effect the calculation in any way, If YMIN is not used, the
lower limit of the display will be the smallest number of pixels in
the image that have a given value (often this is zero pixels at many
intensities). If YMAX is not used, the upper limit of the display
will be the largest number of pixels which have a certain intensity.

NOLOG makes the plot show the actual number of pixels at each
intensity, rather than the logarithm. When the logarithm is computed
in the default option, intensities with no pixels are given the value
0, so you cannot distinguish an intensity with 1 pixel and. an
intensity with O pixels unless you use the LOLOG word.

Examples: _ _ P
HIBT 4 . . shows the histogram for image 4
HIST $@ BOX=3 o shows the histogram for image Q@ (where
Lo @ is a variahbhle) using only the pixels
in box 3
HIST 2 XMIN=1000 XMAX=199% shows the log of number of pixels

with values between 1000 and 1999.

HIST 4 NOLOG shows €the number of pixels (not the
iogarithm) at each value in image 4.

AXES FIND THE CENTROID OF AN OBJECT IN AN IMAGE

Form: AXES source BOX=n

where:

source - tinteger or % contruct) is the image
. that AXES uses, and

BOX ' specifies the section of the image used.

This command will find the centroid of an object within the

Page 59

specified box in the source image. The centroid coordinates are
loaded into VISTA variables AXR and AXC, and are also held in a
common bleck for use by other routines.

The routine uses the highest pixel wvalue on the box perimeter
as a threshold value for the centroid. The threshold is subtracted
from each pixel in the box during the calculation,

PROFILE ‘ FIND THE SURFACE BRIGHTNESS PROFILE OF AN EXTENDED OBJECT

Form: PROFILE dest source [N=nl [CITER=(nl,n2}] CSCALE=¢1]
[CENTER] LPA=#3 L[INTI

where:
dest {integer or % construct) is a spectrum which
will hold the calculated profile, '

S source {integer or ¢ contruct) is the image that
contains the object whose profile is being
measured, '

M=n sets the number aof steps in the iteration,

ITER=(nl, n2) sets number of iterations for (ni1) fast bilinear
interpolation and (n2), slower sinc interpolation,

CENTER ' solves for the contour centers.

PA=f ‘ position angle for the top of the image, and

INT interactively iterate contour solution.

This command is used te #ind the surface-brightness profile
of an object by describing it as a set of elliptical contours. The
center of the object must first be calculated with the AXES command.
PROFILE uses this center as the starting point for its calculations.
The profile is found by sampling the image with a set of circles with
radivs 1, 2, 3, ... pixels, The average value of the pixels along a
circle is the mean surface brightness of that contour. Low order
sine and cosine transforms are taken along the contour to derive its
center., position angle, and ellipticity. After these are found for
the entire image in the radius specified, the countours are adjusted
to more exactly fit the isophotes. The first iteration uswvally turns
the original circles inte ellipses with varying positoin angles and
eccentricities as a function of major-axis length.

High accuracy sinc interpolation is used to find the values
of the pixels along the inner 15 contours. QOutside of this,
either a lower accuracy (but faster) interpolation can be used. or
an even faster bilinear interpolation scheme. The kind of
iteration vsed is set by the ITER keyword.

The result of the profile calculation is stored in a common
block for later use. Print the contents of this block with PRINT,
or save it in a diskfile with SAVE. The results are also written
into the specified spectrum. Use PLOT or LINE to show that spectrum,

Position angles are calculated assuming that the position

Page 60

angle of the ‘top’ of the image (as seen on the TV) is 0. This

can be changed with the PA keyword. Use PA < O to indicate that

the image has been reversed right-left (the ‘normal’ arrangement for
an image is north at top, east at laft).

APER PERFORM APERTURE PHOTOMETRY ON AN EXTENDED OBJECT

Form: APER source L[RAD=(rl,t2: ...,v10)1 EMAG=(MI,MZ,...MN}]
ESTEP=(gize.n)] [SCALE=f] (C={(r,c)] L[BCALE=f]
CLOLDI LINT3I CREFF1]

This command will sum up the intensities of pixels falling
within gircular apertures centered on an object in the ‘source’
image. Using apertures of differing radii will enable you to
characterize the radial intensity distribution of an object. From 1
to 10 aperture radii- in arc seconds can be specified with the RAD
keyword. - If more than one aperture is specified, the list must be
enclosed within parentheses. It does not have to be in order,
however. Alternatively, a linearly increasing squence aof apertures
can be specified with the STEP keyword, where “incr’ is the radius
increment in arc seconds, and ‘n‘ is the number of apertures. The
pixel scale in arcsec/pixel is specified with the SCALE keyword.
Specifying @ list with the MAG word will give observed magnitudes in
the listed apertures. The centers of the apertures must be calculated
ahead of time with the AXES centroiding command, or loaded with the
keyword, Lastly, the OLD keyword tells the routine to use any
unspecified parameters from the last time. ’

The routine will produce a list of the apertures, the sum of
pixels interior to them, the average interior surface brightness, and
the same quantities for the rings defined by sequential apertures,
The summations are done to the nearest pixel at the edges of the
aperture; that is, neo fractional pixel interpolation is done at the
edges. For this reason: results obtained with very small apertures
may be inaccurate, The results are stored in a common block, and can
be examined with the PRINT command, and stored or retrieved with the
GET and SAVE commands.

Page 41

WIND WINDOW AN IMAGE TO A SMALLER SIZE

Form: . WIND source BOX=n -
where:
sopurce (integer or ¢ construct) is the image being

made smaller, and
BOX tells VISTA what part of the old image to save.

This command can he used to select part of an image for
future reduction or analysis. The image specified by ‘source’ is
redefined to be the part of it enclosed by BOX ‘n’. If the specified
box extends over the edges of the image, an error results. Set the
size and position of the box with BOX. MNote: This command cannot be
used to expand the size of an image,

Example: Let image 7 have rows numbered O — 500 and columns numbered
O - 500. We want to chop out a 100 by 100 image, with the first rouw
of the new image at 100, and the $first column at 200. '

BOX 1 SR=100 §C=200 NR=100 NC=100
WIND 1 BOX=1 o S

The WIND command is sihilar to COPY, To copy and window an image at
the same time., use COPY im2 iml BOX=n.

SHIFT SHIFT AN IMAGE IN ROWE OR COLUMNS

t

Form: SHIFT source [DC=+1 [DR=f]

where:

source ' (integer or % contruct) tells SHIFT what
image to work on,

DC=#§ - ghifts the image by ¢ columns, and

DR=#¢ - ghiftts the image by £ rows.

SHIFT will move the ‘source’ image by any desirvred amount.
Specify the desired shift in pixels in the row or column directions
with the DR or DC keywords. The routine first rounds the desired
shift to the nearest pixel, and adjusts the variables specifying the
image ‘s origin. The routine ¢then uses sinc~interpolation to move the
image the remaining fraction of a pixel in the Touw and column
directions.

Page &2

Examples:

1) SHIFT 1 DR=0.5 sh.ifts image 1 by 0.5 rows.

2) SHIFT $IM DR=-0.2 shifts image IM (IM a variable) by
' =0. 2 rows. '

Warning: The program can Be used to shift an image so that its

starting row or column is negative. This can lead to errors or
FORTRAN crashes in other routines in a way that is not easily .
fixable. After shifting an image, IMMEDIATELY window the image (see
WIND) so that the starting row and column are greater than or equal
to zero!

CLIP REPLACE PIXELS DUTSIDE AN INTENSITY RANGE

Form: CLIP source L[MAX=f1 LMIN=f]1 [VMAX=f] L[VMIN=f1 [BOX=n1l

kS

whére:
sourﬁe {integer or % contruct) i% the imége

' that CLIP works on. '
MAX=n B setg the iévei‘abb;é which pixels are adjusted,
MIN=n sets the level belo@ which pixéls are'adJustéd.
VMAX=n replaces all pixels above MAX by ‘n’, and
UMIN= replaces all pixels below MI& by 'n”’.

This routine searches through the image ‘spurce’, and
veplaces pixels with intensities above MAX with VMAX and pixels below
MIN with VMIN. I+ VMIN and VYMAX are not specified, they default to
zevo.

I+ VMIN or VMAX are specified, but no thresholds are entered
with MAX or MIN, the thresholds are taken to be the replacement
values. If# neither MAX nor VMAX are specified, no upper level
clipping will be performed. If neither MIN nor VMIN is specified, but
MAX or VYMAX is, no lower level clipping will be performed. If no
keywords are given, the voutine by default will set all negative
pixels to zero., Specify ‘BOX=n’ only to clip the portion of the
image within box ‘m”.

Examples:

1) CLIP 1 MAX=110. VMAX=100. replace all pixels in image 1
that are above 110 by 100,

Page &2

2} CLIP 1 MIN=EKY VYMIN=0. Q replace all pixels below BKY
"7 by 0.0. SKY is a previously-
defined variable.
3) CLIP 1 MAX=110. VMAX=100. MIN=SKY VMIN=C. O
doas the same as examples 1
and 2 simultaneiosly.

4) CLIP 1 VYMAX=100. - replaces all pixels above 100

by 100,

%) CLIP 1 VMAX=100. BOX=4 does the same as example 4,
but aonly in box &.

&) CLIP 1 sets all negative pixels in
image 1 to zevron.

MaSK ' TELL PROGRAMS TO IGNORE SPECIFIED PIXELS

UNMASHK TELL PROGRAMS TO STOP IGNORING SPECIFIED PIXELS

Form: MASK CROW=n1 L[COL=N] [BOX=N1 L[PIX={(ROW,COL)]

UNMASK [ROW=nl [COL=N] L[BOX=N1 [PIX=(ROW,COL)}1

MASHK tells VISTA programs to ignore the speci$1ed pixels
when doing computatxons‘

Options: Rﬂw-r _ Ignore all pixels in row 7.
COL=c Ignore all pixels in column c.
BOX=h Ignore &a11 pixels in box b,
PIx=(r,c) Ignore the pixel at row ‘v’ and col ‘c’.

T

The command UNMASK is the opposite of MASK, it tells the
programs to stop ignoring the specified pixels, UNMASK can be used
without options to unmask all pixels. '

You can tupe UNMASK without any options to tell the routines to use
all the pixels., Remember that rows and columns are eoften numbered
from ZERO. The row or column numbers specified in MASK are the same
as those given by the ‘D’ option in the ITV command, but remember
that if the TV image is compressed, the ‘D’ option will not give the
exact location of certain features in the image. Use the BOX option
in the TV command to show smaller sections of an image when finding
features you want to mask.

The only routines that test for bad columns now are MARKSTAR,
FITSTAR, and SURFACE, The mask may be saved with ‘SAVE MASK’ and
recalled with ‘GET MASK’, The mask is stored in ECCD. DATA] with the
extension . MSK.

Examples:

Page &4

1) MASK COL=234 ‘ © Masks column 234,
2) UNMASK COL=234 Removes the mask from column 234.
3} MASK PIX=(120,100) Masks the single pixel at
column 100 and raw 125,
4) MASK COL=Q Masks column zero.
5) UNMASK BOX=9 Unmasks the pixels in box 5.
-0 COMPUTE LOGARITHM OF AN IMAGE

Form: LOG source

This command replaces the image pixel values in the image
‘source’ (integer or % contruct) by their base-10 logarithm values.
Any pixels whose original values were less than or equal to O are
replace by O in the resulting image. : :

BL. ' CORRECT AN IMAGE FOR BASELINE SUBTRACTION NOISE
Form: BL source [JUMP] a
where:
soufée . {infeger or_$‘construcf) tells VISTA what imége

to work ony . and

Jumpe - implements detection of jumps in the baseline
column,

This command removes the noige introduced through the digital
‘baseline-restoration procedure used by the data collection program.
The last column of the CCD:, called the ‘baseline column’ is not ,
illuminated during an exposuve. Each pixel in this column determines
the zero~level for the corresponding row in the rest of the chip,
which is subtracted #rom each pixel in that row as the image is read
off the chip into the data—taking system.

The baseline measurement is rather noisy, so when the
zero—~levels are subtracted, significant variations in level #from one
row to another are introduced. The BL program corrects for this by
fitting a straight line by least-squares to the values in the baseline
column. The original baseline measurements are then added back into
the image data and the mean baseline values evaluated from the linear
least-squares fit are subtracted.

The baseline column can sometimes exhibit several jumps in
lavel along its length, BL detects these jumps, fitting a series of
linear functions tp the baseline column between these jumps. To
detect the jumps, thus fitting the entire column with more than one
linear function, use the JUMP keyword.

The BL procedure should be applied to every raw image before
analysis or processing.

Page 45

SMQGTH GAUSSIAN SMOOTHING OF AN IMAGE

Form: 8SMOOTH source EFW=¢] CFWG=£7 [FWR=¢1

wheré:
'éourﬁe - (integer or ¢ contruct) is the
: image being smoothed,
FW=¢ ' sets the full width of the gaussian
smoothing function to be f pixels, and
FWC and FWR set the full width for the gaussian

smoothing function to have s different
width in rows or columns,

This routine will smooth or convelve the ‘souyrce’ image with &
2D or 1D gaussian, This is useful for reducing noise, enhancing low _
surface brightnesc features, or asg the first step for Iooking for sharp
features in an image (by subtracing the smoothed image from the
original). Specify the Full—widthmhathmaximum (FWHM} aof the gaussian
in pixels with the FW keyword. If degired, You can specify differing
widths in the column or TOoWw directions_with the FWC or FuR keywords., To
smooth the image in the column direction only, (each image row is
canvolved along its extent,seperatelg) Just specify the width with the
FWC keyword, To smooth in the Tow direction only., {(down the columns)
Just specify the FWR keyword. -

The cunvdlutiuns'are done in the image domain and may be slow .
for large widths of the gaussian, Edges are handled properly,. At this _
time, the FWHM's of the gaussians are limited to 21 pizxels, :

Examples: é
1) SMOOTH 2 Fu=g, s ~ Smooths image 2 with g gaussian having |
' full width 8.5 Pixels. The width ig i
the same in the row and column ;

directions, j

. e) !

2) SMOOTH 2 FWR=8. 5 FWC=8. 0 Smooths image 2 with 4 gaussian |
having #yl1 width = 8.5 ppus and g

8.0 coluans, |

y

3) SMOOTH 5 FWR=4, 2 Smooths each rouw individvally with g ’

gaussian having fyll width &. 2 rows.

Page &6

ZAP IMAGE MEDIAN FILTER AND PIXEL ZAPPER

Farm: ZAP source [S8IG=f1 [RAD=f] [BOX=nl-
where:
source (integer ar % contruct) specifies

the image being worked on,

"RAD=+ sets the size of the region around
each pixel used in the median filter,

SIG=f specifies the rejection level in terms
of the standard deviation in each
circle, and

- BOX ' tells ZAP to work only in the
: specified box. .

"This command will remove high or low pixels or median~filter
an image. If called without any keywords, the routine moves a 2 pixel
radius circle through the image, and finds the median of the pixels
‘within the civrcle. If.the central pixel exceeds the local pixels’
deviation about the median by 5 sigma, it is replaced by the median.

Te change the radius of the circle, use the RaD=f keyword. ‘£’
must be >= 1 and <= 10 pixels. To change the zap detection level. use
the SIG=f keyword, where ‘£’ is the detection level in sigmas. If ‘¢
is set to zero, this routine will median-filter the image: all pixels
will be replaced by the local median within the circle. Specify '
‘BOX=n‘ only to process the portion of the image within box ‘n’.

Examples:‘
1) ZAP 1 Do the filtering with a circle of radivs 2,
' ad justing pixels that are 5 sigma away from
the median, where sigma is the standard
deviation in each tircle.
2) ZAP 1 BOX=4 does the same as example 1, but only in the

region defined by box 4.

3) ZAP 1 RAD=7 considers a circle of radius 7 at each pixel.

Page &7

SURFACE FIT A PLANE OR SECOND-ORDER SURFACE TO AN IMAGE

Form: SURFACE source L[BOX=nl [PLANE] CSUB]
CDIVI CMASKI LCNOZERO) [PIX=N] (vredirection)

where:

souvrce (integer or % contruct) is the image to
which the surface is being fit, .

BOX=n tells VISTA to do the fit only in box ‘n’,

PLANE fits a plane:; rather than a second order
surface, ’

SUB has the program subtract the best-fit surface

, #rom the original image.

DIV . replaces the original image with itself
divided by the best—Ffit surface,

. MASK "tells VISTA to ignore masked pixels, and
NOZERO - suppresses rejection of pixels with zero value.
PIX=n uses every n‘th pixel for speed :

" This routine fits a second-order polynomial surface to the
specified image, or to the subset of that image designated by the BOX
keyword., . It fits to all pixels in the image or box, except those that
have the value zevo, ot those masked with the MASK command. These two
features allow you to mark ouvt sections of an image that you do not
want included in the fit. Use the command CLIP to set pixels to zero.

For speed, you can have the program find the best~fitting
surface using every n—th pixel. Use the PIX keyword for this.
For example, if you say PIX=3, the surface is fit to the pixels in
columns Q. 3, & 9 ... in rows G, 3, & 9...

A polgﬁomial expression for the fit is prﬁntéd on the output
device. _ :

To make the program ignore masked pixels, you must use the
MASK keyword in the command. If you do not, it will use all pixels
except those that have value zero. To fit ALL pixels, including those
that have value zero, use the NOZERQD word. {This word is short for NO
ZERO CHECKING). To #£it a planar (instead of a second-order) surface,
include the word PLANE. :

In its normal operation, the program replaces the image with
the hest~fitting surface. To subtract the surface from the image., use
the word 8SUB. To divide the image by the surface, use the word DIV
The best—fit surface is applied in the manner you specify to EVERY

pixel.,
Examples:

1) SURFACE
2) SURFACE
3) BURFACE
4) SURFACE
5) GSURFACE
6) SURFACE

NOZERO-

BOX=2
MASK

SuUB

PIX=5

Page 6B

regardless what the PIX word says.

Fl

replaces image 1 by the best—-fitting
polynomial. Pixels with value zerc are
not included in the fit.

does the same as example 1, but this
time ALL pixels are included in the fit.
does the #it only in BOX 2.

£its the best second-order surface, ignoring
masked pixels.

subtracts the best fitting surface from
image 1.

does the fit using every 25th pixel.

Page &9

MASH : MASH AN IMAGE INTO -A SPECTRUM

Form: MASH dest source 8P=(il,i2) [BK=(bl,b2)1 L[NORMI
LCOL=(c1,c2)] CSKY=s] [REFLAT] L[SUB]

where: : :
dest (integer or ¢ construct) is the buffer which
will hold the resulting spectrum
spurce (integer or $ construct) is the image from which
‘ the spectrum is being made,
gP= delimits the rows in the image ‘source’ which
are used to make the spectrum.
BK= ‘ delimits Tows wsed to determine the background,
NORM averages the added rows,
CoL= takes the spectrum from the specified columns,
. BKY= Saves the sky rows (from BK= keyword) in
- spectrum buffer s,
REFLAT £its each column with a parabola, and uses this
as the background, and
sUB subtracts the average background spectrum from

the original image.

This command will cullapse_selected poﬁtiuns of an image into a
single row, fthus producing a spectrum.. .

The spectrum'is prbduced under the assumption that ¢he
dispersion runs parallel to the image rows: i.e. the pixels in any
given column were struck with light from only one wavelength.

The vows indicated by the 5P, COL, and BK keywords are PAIRS
of numbers enclosed in parentheses. Rows ‘il’ to ‘i2‘ are co-added
into the final 1-vrow spectrum. The COL word selects the columns used
to construct the spectrum. Background rows, specified with the BK
keyword. are co—added to produce another spectrum: this is subtracted
from the final 1-row spectrum and saved into another spectrum buffer
if the SKY keyword was supplied. Up to six SP or BK keywords can be

specified. Also, if an image or background section consists of only
one row {(il=i2 or bi=b2) then the second number and the parentheses
can bhe omitted. Rows lying in both spectrum and backgound rows are

taken to be spectum vows: they are not used in the determination of
the background. -

If the keyword ‘NORM‘ is specified, then the sum of the image
rows is divided by the number of image Tows. I+ the ‘REFLAT’ word is
used, the program fits a polynomial to each column of the background

Page 70

rows, and uses the polynomial as the background. In this case:; the
BK rows select the rows used in the fit. ‘SUB’ will subtract the
background spectrum #rom the original IMAGE.

Examples:

1)

MASH 3 1 @P=(100, 150) BK=(90,?9) BK=(151,170)

This takes vows 100 through 150, inclusive, in image 1, and

produces a spectrum out of them. Rows 20 through 99 AND 151 thvough
170 are used to determine the background. -

2)

MASH $8NUM $INUM SP=(100, 150) BK=(20, 99) BK=(151,170)

NDoes the same as example 1, but this time producing the

spectrum from image INUM and storing it in spectrum SNUM, where INUM
and SNUM are variables.

3)

MASH 18 7 BK=(0, 14&) &P=(17.99) NORM

Mashes vows 17 through ?% of image 7 inﬁo.spectrum 18. Rows O

though 16 in the image determine the backgound. The spectrum is the
average {(rather than the sum) of the rows in the image.

4)

MASH 18 7 BK=(O.16)'SP=(17;99) REFLAT suR

Does the samé as example three, but subtracts a polynomial

expression for the background, rather than the background spectrum
itsel#. It also subtracts the background spectrum from the SP rows in
the original image.

9)

MASK 18 7 BK=(0, 1&) SP=(17,%%) COL=(100, 200) SKY=20

Does the same as example 3, but epxtracts only columns

100 through 200, inclusive, and saves the background vrows in spectrum
buffer 20.

LAMBDA CALIBRATE WAVELENGTH SCALE FROM COMPARISON SPECTRUM

Form: LAMBDA source. [FILE=xxx] LORD=nl L[TTY] L[INT] L{redirectionl

where:
source (integer or $ construct) selects the spectrum
: used in the calibration,
!
FILE= is a file of line identifications,

ORD determines the order of the polynomial

Page 71

expressing the relation between channel
number and wavelength,

TTY sends more extensive output to the terminal,
INT allows interactive selection and weighting
nf lines.

This command is a concatination of the LINEID and WSCALE
commarnds. It will calculate the wavelength calibration of a comparison
spectrum specified by ‘source’. The pragram looks for peaks and
attempts to identify them based on an initial estimate of the
reciprecal dispersion in Angstroms/pixel and a list of line
identifications read in from file in L[CCD. SPEC] with name ‘xxx. WAV’
Accurate line centers are calculated, and if specified in the data
£ile, partial line blends deconvolved. The line centers are then fit to
a polynomial of order specified by ‘ORD=n‘’. If the keyword ‘INT‘ is
specified, interactive line identifications can be made and weightes cam
be assigned to the identified lines, The program will ask for all
unspecified parameters. ’ '

The fesulting wavelength scale becomes associated with the
original comparison spectrum. You then use the COPW command to
associate the wavelength scale with you program spectra.

Examples of command:
1) LAMBDA 4 ORD=3 FILE=NEON

Computes the wavelength scale for spectrum 4, doing
a third-order fit to wavelength versus channel number. The
wavelengths for the lines are in [CCD, SPECINEON. WAY. The resulting
wavelength scale is printed on the terminal. ‘

2) LAMBDA 4 ORD=3 FILE=NEON >LP:

Does the same as example 1, but this time sending the
output to the line. printer.

3). LAMBDA 4 TTY ORD=1 FILE=NEON INT

Does a first order £it to wavelength versus channel number
for spectrum 4. The user can interact with the routine as it
proceeds.

Page 72

See the help message on the LfNEID command for a description
of the wavelength data file.

LINEID IDENTIFY LINES IN A WAVELENGTH CALIBRATION SPECTRUM

Form: LINEID source L[FILE=xxx] [ADD] CLTTY1 LINT]1 (redirectionl

whare:
sdurce - (integer or % construct) selects the spectrum
used in the calibration, :

FILE= is a file of line identifications,

ADD will add newly identified lines to a list
' of lines from a previous execution of LINEID,
TTY ' sends more extensive output to the terminal,
INT allows interactive selection of lines.

This command will match emission peaks in a wavelength
calibration spectrum with their wavelengths supplied in a file. The
program looks for peaks and attempts to identify them based on an
initial estimate of the reciprocal dispersion in Angstroms/pixel and a
list of line identifications read from a file in L[CCD. SPEC] with name
ryxx. WAV, Accurate line centers are calculated, and if specified in
the data file, partial line blends deconvolved. The matched lines are
saved into a common block in VISTA. The contents of the common block
can he examined ueing the command ‘PRINT LINEID’. By default, the
previous contents of the common block are replaced with the current
identifications. However, i+ you use the ‘ADD’ keyword the new
identifications will be appended to the older vresults. This allows you
to combine the identifications from several independent wavelength
calibration spectra. If the keyword ‘INT’ is specified., interactive
line identifications can be made. Once your line list has been
treated with LINEID you use the WSCALE command to fit a polynomial
to the wavelenghts as a function of pixel number.

Exampleé of Eﬁﬁmaﬁd&rrm".”.-.“”
1) LINEID 4 FILE=NEON
Matches lines in spectrum 4 with the wavelenghts supplied in

ECCD, SPEC INEDON. WAV. The resulting ldentifications replace any
previously saved identifications in the common block.

Page 73

2) LINEID 4 FILE=NEON >LP:

Does the same as example 1, but this time sending the
‘output to the line printer. :

3) LINEID 4 INT FILE=NEON .
LINEID 5 TTY FILE=MERCURY ADD

The first command does the same as example 1, but allows the
user to make additional line identifications after the command has made
its best attempt. The second command works on a separate mercury lamp
spectrum in spectrum buffer 5. The identifications are added to those
for the neon spectrum,

The wavelength file has the following format: The file is
formatted, with the first line showing the estimated dispersion,.
followed by any second—order term. The format is free, but the
second—order term must be 0.0 if it is to be ignored. Subsequent lines
contain an ordered set of line wavelengths in Angstroms. One spectral
line is given per file line. The wavelength if followed by a two-letter
ID code. I the code is CO, that line is ignored. The code is
followed by the wavelengths of any blue—side or red-side satellites
which might be blended with the primary line. The wavelengths must be
set to 0.0 if there are no lines blended with the primary.

Example file:

7. 86 1. 0E-03
5881. 4900 NE 5852. 4900 0.0
5944, 8300 'NE 0.0 5975. 2800
6030. 0000 NE 0.0 0.0

6096. 1600 NE 6074, 3400 4143, 0600

The #ile should be stored in the [CCD.SPECI directory with
the extension . WAV, :

WSCALE CALIBRATE WAVELENGTH SCALE FROM ‘LINEID’ OUTPUT

Form: WSCALE dest [ORD=nl L[TTY] LINT] Credivectionl]

where:

dest (integér or % construct) selects the spectrum
for which the wavelength scale is to apply.

ORD= determines the order of the polynomial

expressing the relation between channel
number and wavelength,

TTY sends more extensive output to the terminal,

Page 74

INT allows interactive selection of lines.
INT implies TTY, '

This command will calculate the wavelength calibration
using the output generated with the LINEID command. The resulting
calibration is associated with the spectrum specified by ‘dest’.
The line centers determined with the LINEID command are fit
to a polynomial of order specified by ‘ORD=n’. If the keyword ‘INT‘ is
specified, interactive line weighting can be done. The program
will ask for all unspecified parameters.

Although the resulting wavelength scale becomes associated with
the ‘dest’ spectrum, you can then use the COPW command to associate the
wavelength scale with any other spectrum you wish.

Examples of command:
1} WSCALE 4 ORD=2

Computes the wavelength scale for spectrum 4, doing a :
second—order fit to wavelength versus channel number. The resulting
wavelength scale is printed on the terminal.

2) WSCALE 4 ORD=2 >LP:

Does the same as examﬁie 1, but this time sending the
output to the line printer. '

3) WSCALE 4 ORD=1 INT
Does a’first order fit to wavelength versus channel number
for spectrum 4. The user can interactively give weights to the

identified lines being fit (O weight discards a line}.

COPW COPY A WAVELENGTH SCALE FROM ONE SPECTRUM TO ANOTHER

Form: COPW dest source [sourcel2]
where:
dest is thé-déstinéfion Spéffrum tﬁ-mhich a

wavelength scale is to he copied.

source 1is the source spectrum from which the
wavelength scale is to be copied

sourced is a second source spectrum to be used

Page 79

for wavelength interpolatiun

This command will copy a wavelength calibration from one
spectrum to another., This is typically done to copy the wavelength
scale computed with the LAMBDA command from the compavison spectyum
to a program spectvrum. The actual spectrum data are not changed by
this command, only the wavelength pavameters. If a second source
spectrum is given then the command assumes that you have two comparison
spectra which bracket the program spectrum in time, and it will
use the times of observations of the three spectra to do a linear
interpolation of the wavelength parameters of the comparisons to the
time of the program spectrum. This pracedure will provide an
improved wavelength calibration by removing most of the effects
of instrumental flexurs.

ALIGN TRANSFER A SPECTRUM TO A NEW WAVELENGTH SCALE

Form: ALIGN source DSP=f W=(w,p)} CLOGI L[LGI1 [MS=nl
CFLIPY CV=+#]1 L[I=z]

where:
spuTce . Cinteger or % construct) is the specirum

’ that the program works on.
DEP=§ , converts the dispersion to £ Angstroms/pixel,
W=(1l,p) o sets wavelength 1 to occur at pixel p.
LOG _ transforms to a logarithmic wavelength scale,
LGI _ uses 4-pt Lagrangian instead of sinc

interpalation

MS=n sets wavelength scale to be that of spectrum ‘n”.
FLIP 7 reverses the direction of the dispersion. and
V= removes velocity shift of £ km/sec.

=12 removes redshift z

This command will transform a spectrum from its original
wavelength scale to either a linear wavelength scale or a logarithmic
wavelength scale by sinc interpolation. The original gspectTum can be
on any of the three wavelength scales supported by VISTA, i.e. linear,
logarithmic, or polynomial. If the spectrum is on a polynomial
wavelength scale then the observed intensities will be scaled to an
uncalibrated F-Lambda scale, Before calling this command, & lambda
ralibration should be done on the appropriate arc spectvrum. The
results of the calibration are then transfered to the program spectrum
using the COPW command. ALIGN is then called to transform the spectrum
onto the desired final wavelength scale. You must supply ALIGN with
the desired dispersion and wavelength reference point with the keywords
‘DSP=£‘, where '#‘ is the dispersion in Angstroms/pixel, and ‘W=(uw:.pl)’,
where ‘w’ is the desired wavelength at pixel ‘p’.

Page 76

Other keywords provide for options as follows. The word ‘MS=n’
will force the dispersion to match that of previously aligned spectrum
n’. ‘FLIP’ will reverse the order of the dispersion, and ‘V=f‘ will

perforim a velocity shift of ‘f’ kilometers/second.

SKYL INE RECALIBRATE WAVELENGTH SCALE USING NIGHT SKY LINES -
Form: SKYLINE s1 [s2} £s3] [s4]) [s51 [s61 ... [s5151]
where:
s1 is the spectrum bhuffer number of the sky
spectrum.
82 ... =15 are spectrum buffer numbers whose

wavelength scales are to be recalibrated
using the night sky spectrum si.

This command examines the night sky spectrum ‘s1‘ for suitable
night sky emission lines. I+ it finds at least two lines in the
spectrum it will use them to compute a corrected zero—point for the
wavelength scale (the dispersion term is not changed). This new
tero-point is then applied to all of the other spectra supplied on the
command line. All of the spectra should be on the same linear
wavelength scale (using the ALIGN command} to begin with.

Example: ' .
MAEH 1 8 SP=(30,40) BK=(10,20) BK=(50, 40} SKY=2
COPW 1 20 ! Copy wavelength parameters
COPW 2 20
ALIGN 1 DSP=7.0 ! Xform to linear wavelength
" ALIGN 2 DEP=7.0
SKYLINE 2 1 t Correct zevo—-point

MASH is uvsed to operate on image buffer 8, producing a
sky-subtracted program spectrum in spectrum buffer 1 and the sky
spectrum in spectrum buffer 2, Wavelength parameters are copied
from a previously calibrated comparison spectrum (in buffer 20).

The two spectra are transformed to a linear wavelength scale using
ALIGN. Then the zero—-point of the wavelength scale is corrected using
SKYLINE., This procedure can remove instrumental f#flexure if your
spectra contain usahbhle night-sky lines, '

EXTINCT CORRECT A SPECTRUM FOR ATMOSPHERIC EXTINCTION
Form: EXTINCT source

This command will correct the ‘aligned’ spectrum ‘source’ for
atmospheric extinction. The zenith angle is measured from the header
information, and the air mass calculated with a polynomial in secant(z)
to account for the finite thickness of the atmosphere. A set of
extinction values are calculated at several wavelengths, and a spline

Page 77

drawn through them. The spectrum is multiplied by the spline to correct
it for extinction.

The longitude and latitude of the observatory at which the
image was taken can be entered be defining the DCL symbols V$LONGITUDE
and V$LATITUDE before you begin runmning VISTA. You will need to do
this to obtain correct determinations of air mass or extinction when
reducing CCD images from other observatories, The longitude and
latitude must be in decimal degrees: For example

DEFINE VSLONGITUDE "121. 64554"
DEFINE V$LATITUDE "37. 43029"

It these symbols are not defined, the longitude and latitude of Lick
Observatory will be used. '

FLUXSTAR DEFINE A FLUX CURVE WITH A STANDARD STAR SPECTRUM

Form: FLUXS8TAR source Esfandardl TAVE] L[WT=wl L[SYSAI L[SYSC]

kA

wheare:
source . _(; (integer or % construct) is the spectrum
used to determine the flux curve,
standard - : (character string) is a file
' containing the flux calibration for
the ‘source’ spectrum,
AVE avevages the current spectrum with
' previous results, and
CWT=w : specifies weighting for the averaging.
SYSA produces a "System A" (IDS nomenclature)
rTesponse curve,
SYSC produces a "“System C" (Compromise betweén

A and B) reponse curve.

The FLUXSTAR command generates a flux curve from a standard
star spectrum and a file containing the correct flux levels as a
function of wavelength. The input spectrum is assumed to be on a
linear wavelength scale, corrected for atmospheric extinction, and to
have its intensities on an uncalibrated F-lambda scale. The routine
locates the flux points given in the input file, and finds the star’s
average flux over the specified wavelength bin of the flux point. A
set of correction points are thus defined, which consist of the correct
fluxes, reduced to the Hayes-Latham Vega calibration, divided by the
observed intensity of the standard star. A spline is drawn through
these points and replaces the standard star spectrum to give the flux

Page 78

curve.

The FLUX command takes the correction points defined above, and
uses a spline to define a flux calibration buffer for the input
gpectrum. The spectrum is then calibrated by multiplication by this
buffer. The separate FLUXSTAR and FLUX commands pevmit the calibration
of spectra on different wavelength scales than the standard star
spectrum, :

The standard star’s flux measurements are read in from a file,
which is assumed to be in the E[CCD.SPECI directory, with extension .FLX
unless specified otherwise. The file is headed hy the stars apparent V
magnitude, and then its magnitude at 5445 A, Each line of the file
will contain a flux point specified by its wavelength, magnitude per
unit frequency, and bin width in angstroms., The points must be in
order, but there is no strict format that must be observed.

‘The keywords ‘AVE’ and ‘WT=’ allow the averaging with weights
of multiple flux curves. The default weighting., used for the first
£flux curve as well as for those using 'AVE’, is 1. Anytime neither
keyword is specified a fresh flux curve is started (again, with a
weight of 1.), Note that the averaging can handle two flux curves
which overlap (hut do not necessarily match perfectly) in wavelength.
and can even create a flux curve from two curves with completely
disjoint wavelength scales, but it cannot insert flux points in the
midst of an existing flux curve. , :

The 8YS8A keyword produces a point—-by—-point flux curve instead
of a smooth, spline fitted flux curve. This is done by removing the
known stellar absorption lines from the observed standard star spectrum
The atmospheric bands, however, are not vemoved. The result is that
you end up with a flux curve which can correct for the atmospheric
bands. A drawback for S8YSA is that any "anomalous® absorption
lines not known to the program will appear in the response curve
and can lead to extraneous features in the data.

The SYSC keyword produces a compromise response curve with the
hest features of both "system A" and {the default] "system B". In this
option the system A curve is smoothly fitted by a spline (at the usuval
knot points) while the B and A atmospheric bands (+- &3 Angstroms) are
retained. The curve is piecewise continuous. It is free from glitches
introduced by spurious absorption features in the stellar spectra, retains
a higher accuracy outside the extreme knot points, and compensates for
the atmospheric bands in the data.

Page 779

FLUX FLUX CALIBRATE A SPECTRUM

Form: FLUX source
where:

source (integer of % construct? is the spectrum being
worked on.

FLUX replaces a spectrum

which is in some arbitrary units of
intensity, with the flux in that spectrum. The spectrum must be on a

linear wavelength scale, The #lux calibration is taken from a
standard star #lux curve 1oaded with the FLUXSTAR command.

Page 80

Photometry INTRODUCTION TO STELLAR PHOTOMETRY ROUTINES

VISTA has a package of programs designed to produce stellar
magnitudes from CCD pictures. These programs are best suited for work
in moderately crowded fields where there are photometric standards on
each frame, but they may also be used for photometry of single stars.

This section of the helpfile is designed as a rTeminder to those
who already know how to use the photometry routines. I# you are a
beginner, read this section, and note which commands are mentioned.
Study the helpfiles for those commands, then read this section again,
particularly the examples below. If things are not clear, please see
(or mail) Don Terndrup (at Santa Cruz).

There are three steps in finding the magnitude of a star. It is
assumed that all the stars on the CCD frame have the same shape, and
differ only in brightness. The first step of the process is the
determination of the shape of the stellar images. This is accomplished
by the routine PSF. In the second step, the brightness of the stars on
the frame relative to the point-spread function is found by a
least—-squares method (the command for this is FITSTAR). This produces a
list of relative magnitudes which are converted to apparent magnitudes
in the third step: which is performed by the command MAGSTAR.

There are other commands which make the fitting easier or
produce other data: see MASK, MARKSTAR, FITMARK, MODPHOT, and COORDS.
Let’s assume that you want to do the whole number on an
image: locate all the stars, #find their brightnesses. convert them to
magnitudes, find the coordinates, and print a neat table of the
Tesults. Assume the image you are working on is stored on the disk
with name “IMAGE’. Then you would probably do the following:

RD 1 IMAGE , (read into buffer 1}

MN 1 - » (find the mean for the TV)
™V t CF=WRMB ' (display the image)
MARKSTAR NEW (create a photometry list:

enter standard magnitudes
. - &and coordinates)
PSF 2 SIZE=20 (find the PSF and store it
in buffer 2)

FITSTAR 2 FILE R (find the stellar br:ghtnessas)
MAGSTAR (find the magnitudes)

COORDES {compute coordinates)

FRINT PHOT HARD (print the results)

SAVE PHOT=filename (save the rTesults)

Now uyou examine image 1, which is the original image with the
stars removed. You notice that there is a star or two that you missed
marking the first time around. Then you might do the following

Page 81

sequence.

MARKETAR (append to the current list)

FITSTAR 2 FILE INTER (select anly those new stars

: ' in the detevrmination of
brightness!

COORDS _ (do the coordinates again)

MAGSTAR (do the magnitudes again)

PRINT PHOT HARD (make a new table)

SAVE PHOT=+ilename (save the results)

Or, suppose you found that the programs failed to find
the proper brightness for a star on the frame you Just worked on
because column 30 was bad.

"RD 1 IMAGE . (restore the original image)

TV 1. ' (display again)

MASK COL=30 ~ {tell the program to ignore
column 30}

FITSTAR 2 FILE INTER : (select the star and try again)

Another example: VYou found the brightnesses of the stars two
days ago, but did not enter the magnitudes of the standards.
You want to do this now, and compute the magnitudes for all the
stars in the photometry file. : :

GET PHOT=filename (get the old version)
MODPHOT) , (enter the magnitudes)
MAGSTAR ‘ (compute magnitudes for all)
SAVE PHOT=filename {save the results)

Some experimentation will no deubt be necessary. Don Terndrup
will he glad to receive comments about these programs and help you
understand them. '

MARKSTAR LOCATE STARS
Form: MARKSTAR\(NEN] CAUTD] [DR=drl L[DC=dcl {RADIUS=v1 L[NOBOX]

MAéKSfAR créates a ?photumetrgrfile?; whicﬁWiérérrecn;&.u% the

positions, coordinates, and magnitudes of stars on an image. (See
below for a complete list of entries in the photometry filel. Typing
‘new’ starts a new list. If you don‘t type ‘mew’, any stars you mark

will be appended to the current list (if there is one)l; in this case
the program will show the positions on the TV af the stars that have
already been marked.

MARKSTAR is an AED interactive vroutine, which avtomatically
operates on the image currently stored in the TV. You mark with the
TV cursor those stars you want to include in the photometry file. The

Page 82

TV draws a box around the stars you have marked so you won’t include a
star more than once. The position is stored in the photometry file,
along with other information which you may enter.

The photometry file is stored internally in the VISTA program asg
a common block., It is NOT automatically written to the disk. You have to
save the results you make with the photometry routines using the SAVE
command, Similarly, you can connect a photometry file to the program
with the GET command. Read ‘PHOTDMETRY'’ for examples, The photometry
files are stored in [CCD. DATA]l with the extension .PHO.

There are two ways to ocperate this program. The first mode
lets you interactively mark the positions of the stars:

1) Load an image into the AED with the TV command.

' 2) Type MARKSTAR or MARKSTAR NEW (with a RADIUS specifier).

3) Move the cursor near a star,

4) Hit ‘C‘ or ‘X’ on the AED to mark the star.

The ‘X’ key defines the star’s positon to be exactly
the location of the cursor. The ‘C‘’ computes

an exact position by finding the centroid of the
stellar image. "You will probably use the ‘CY key
most of the time. The ‘X’ key can bhe used in very
crowded fields. :

5) Striking the ‘N’ key aFter mark1ng a star allows you to
enter data about that star (see belaw).

&) Repeat steps 3 and 4 until all the desired stars are found.
At any time you may type ‘H’ on the AED to get a list
of the. commands for this pvrogram.

7) Hit ‘E’ on the AED when you are finished.

Using the ‘N’ key on the AED allows you fto enter:
1) a character label for the star
2) the magnitude, if the star is a standard
3) the right ascension and declination

The ‘N’ key only applies to the star most recently marked by the ’X’
or ‘C’ keys on the AED. Ang information you can enter with the
‘M’ key can be changed w;th the MODPHDT command.

The second mode is to have the program mark all the stars that
are on an already-present photomety file. This saves you time when
you have several exposures of the same field (say in several colors),
The syntax for the second mode is MARKSTAR AUTO with the other
options. The program takes each position on the current photometry
photometry file, then looks at the current TV image for a star. 1¢f
the star is found, the information is stored on a new photometry list,
REPLACING the old list. (Save the old one first!) If the stars on the
new image are not exactly in the same positions as on the old image.
use DR and DC to specify the change that must be applied to the old

Page 83

coordinates to match the new ones. When the program is finished
marking the stars in this automatic mode, it switches to the
interactive mode, allowing you to mark more stars.

You can print the contents of a photometry file with the FRINT
command, Type ‘PRINT PHOT’ to see the results on your terminal; type
‘PRINT PHOT HARD’ to send them to the lineprinter.

It is best to create a new photometry file for each image
you reduce. That way there is a one—-to—-one match between images
and files. You do not have to include all the stars in a frame in
a photometry £ile, if you do not so desire, but you are asking for
trouble if you have information from several frames in the same file.
This will be especially ¢troublesome if you use FITSTAR.

- The photometry file contains a series of records of the form:

LABEL, (DATA(I), I=1,30)

where &
-ABEL is. a character#80 description of the star
DATA are numbers describing the star.

The current definitions of DATA are:

1} Haour angle at m1dp01nt of exposure in seconds of time (almags > G)
2) Frame scale in arcseconds per pixel.
3) Row position of star.
4) Column position of star,
5) Epoch of coordinates.
b)Y Trial right ascension for star in seconds of time.
. 7) Calculated right ascension in seconds of time.
8) Calculated declination in seconds of arc.
@) Trial declination in seconds of arc.
10) Peak height of star.
i1) Scale ratio: rvatio of star to point-spread function.
12) Error in scale ratio.
13) Magnitude, if star is a standard.
14) Non-zero if star is a standard.
15) Errvor in standard magnitude.
14) Calculated magnitude.
17) Error in calculated magnitude.
i8) Background level near star in counts,
19) Background expressed in magnitudes per arcsec.
20) Total counts under the star.
21) Air mass at midpoint of exposure {(computed assuming taken at Lick)
22) Exposure time in seconds.
23) Universal time: month
24) UT day.)
25) UT year.

Page 84

26) Ut time at which éxposure was taken in seconds.

27) Right ascension of center of frame in seconds of arc.
<8) Declination of center of frame in seconds of time.
29} ’

30)

Note: If you are reducing data which was not taken at Lick,
you will have to tell VISTA the longitude and latitude of €he
observatory where the images were Produced. See the section EXINCT
(type HELP EXTINCT if Yyou are on a terminal) for instructions.

PSF FIND THE POINT SPREAD FUNCTION FDR.AN IMAGE

Form: PSF dest [SIZE=nl [8KY=n3 Laverage]

where:

dest : {integer or % contruct) iz the buffer where
the PSF will be stoved,

SIZE specifies the size of the PSF image,

SKY sets the level of the background subtracted
from the PSF before it is stored, and

average . a?éﬁages (ratﬁer-then sums) the images of

the stars making up the PSF.

This program finds the point spread function for an image.
The PSF is the function which describes the image made by a point
source, such as a star. This routine empiricallg'finds the PSF by
extracting pieces of the TV image and moving them to the image buffer

This is an AED INTERACTIVE routine, which avtomatically operates
on the image currently stored in the TV. To run the program: place the
TV cursor near a star you want included in the PSF, then hit ‘C* on the
AED, The program then finds an exact position, extracts g segment of
the image near the star, then draws a hox showing the section extracted.
This process may bhe repeated for different stars, in which case the
segments of the image are summed. - -

Comments on the keywords:

dest This number must he different from
: the number of the image in the TV. I¢ you
select any stars for the PSF, any image
previously in buffer ‘dest’ wiil be
destroyed.

£SIZE=nl

[SKY=n]

Laveragel

Examples:

Page 895

If you include this word. the PSF image will
bhe square, having (2 #+ n + 1) Tows and an
equal number of columns. I# you leave this
word off, the program will try to find the
size of the stellar images by seeing how the
first image falls of# from its peak. The
algorithm for this is rather primitive, so

it is best teo use the BIZE keyword. - To find
the value of n. use the PLOT command to see
how large the wings of the stellar images are.

This optional word defines the sky level,
which is subtracted from the PSF before it is
written to the output bufter. I¢ you do not
define the sky level, the program chooses

its own. The default value is faken to be
the mean of the pixel values on the perimeter
of the PSF.

If you type this word in the command line, the
PSF will be the average of the images of the
selected stars. Otherwise, the PSF will

be the sum of the selected stellar images.

Assume the image in buffer 1 is loaded into the TV,

PSF 2 SIZE=i5

cuts out a 31 by 31 section of the
TV. image, and stores it in buffer 2.

PSF 2 SIZE=13 AVERAGE does the same as the above, but

averages the selected stars,

PSF 2 computes the size of the region
' selected. -

Suggestions:

1) The stars'mhich define the PSF should be isolated
from other stars, significantly above the noise
level, and not ftoo near the edge of the picture.

2} For accurate phdtometrq,'fhe stars which go into

the PSF must all have the same shape. Examine
the profiles of the stars with PLOT if you suspect
that the stellar images are not all of the same

shape.

Page 86

FITEBTAR FIND THE BRIGHTNESSEE OF STARS

Form: FITSTAR psf [filel [flatl Cplanel [1ntar3 Llocall Cnosubl
Cradius=v]

FITSTAR finds the brightnesses of stars on an image using a
point spread function generated by PSF. It assumes that a stellar image
is composed of a background and the PSF multiplied by some constant.
The program finds this constant, which is called the ’‘scaling ratio’ and
terms in a polynomial expression for the background by least—squares.

The program operates both with and without a photometry file. If
you are interested in the integrated brightnesses of single stars and dao
not care about saving the results, then you do not need to use a
photometry file. I#, on the other hand, you want to compute magnitudes,
£it stars in crowded fields:, or save the results for €the futurer You
will need to have a photometry file. These files are created by the
program MARKSTAR; 'see the helpfile for that command for a description
of photometry files.

After finding the scaling ratio, the program subtracts
the best £it to the star #from the input image. That way you can
check that the fit was good, and try again if it was not.
This feature allows you to remove unwanted stars from an image.

Definition of arguments:

psf is the image buffer which contains the
point spread function for the image being
analyzed., See the helpfile for P&F for
t an explanation of the PGBF and how to generate
it.

file tells FITSTAR teo find the brightnesses of
‘ gatars in the photometry file. I+ you do not
put this word in the command line, the pragram
will ask you to select the stars you want,
and will not save the results on the disk.

EFlatJ.EpIane] constrains the type of background used in
the least—square £fit for the brightness of the
star. If the word ‘flat’ is specified, the
background will be a constant. If the word
‘plane’ is used, the background will be a
plane surface. If neither is specified, the
background will be a second-degree polynomial
surface.

Linter] This word has meaning only if you are using a
photomtry file. If this werd is included
in the command string, the program will ask

Page 87

you to place a TV cursor on those stars or
groups of stars whose brightnesses are being
determined. If the word ‘inter’ is not in the
command, all the stars on the photometry

file will be #£it,

If no file is specified, the program runs inter-—

actively.

flocall This word has meaning only if there is an input
file. If this is specified, the fitting is
done one star at a time. I+ the word is not

specified, the program divides the input image
into groups of stars, and finds

the brightnesses of all the stars in a given group
simultaneously.

‘If there is no input file, the program runs in

the ‘local’ mode.

Enosub3 If this is included. thé images of the stars are not
stbtracted from the input image.

CRADIUS=r] - bpecifies the region of the image over which
: the stars will be fitted. The least-square
fit will be done inside & circle of radius '’
around a single star, or on all pixels within
distance ‘r‘ from any of several stars being
fit simultaneously. If the radius is not
- speciftied, the radius is taken to the the size
of the PSF image. ‘

Examples of the use of FITSTAR:

Each of the examples below assumes that the PSF for the image'has
been found, and is stored in buffer 2.

1} Zap out stars. Use a planar bhackground,

FITSTAR 2 PLANE

Move the AED cursor to the star you want removed.

Hit ‘C’ on the AED to find the brightness. Examine

the original image. The selected stars should be gone.
2) Find the brightnesses of all stars on an input file.

Do not subtract the stellar images from the image.

Use a constant background. Fit all the stars one by one.

FITSTAR 2 FILE NOSUB FLAT LOCAL

3) Same as #2, but use the AED cursor to seleact

Page 80O

the stars to be fitted.

FITSTAR 2 FILE NOSUB FLAT LOCAL INTER

4) Same as #2, but segment the picture into groups of

close stars, and fit all the stars in each group sxmultaneoualg.

FITSTAR 2 FILE NOSUB FLAT

5) Fit all the stars in the input file. Use a
second-degree polynomial background. Suhtract the
stars from the input image. Hegment the picture
into groups.

FITGTAR 2 FILE

&) Ségment the picture into groups of stars. Select the
groups to he fit with the cursor. Use a plane background.

FITETAR 2 FILE INTER
FITMARK . LOCATE STARS AND FIND THEIR BRIGHTNESSES
Form: FITMARK psf fnewl [flatl fplanel Lnosubl

This program combines the operation of the programs MARKETAR
and FITSTAR, and is used to interactively select stars on a TV image
and find their brightnesses. The keywords of this command are defined
in the same was as in MARKSTAR and FITSTAR., See the helpfiles for
those commands for complete informaton. Briefly:

Use NEW to start @ new photometry list. Otherwise the stars
that you mark will be added to the current photometry list. Specify
the type of backgound used with PLANE or FLAT. The stars that you mark
should be isolated from one another The program cannot fit several
stars simultaneously.

COORDS COMPUTE COORDINATES FOR STARS
Form: COORDS

COORDS f£inds the right ascension and declination for each
star in a photometry file. At least three of the stars must have
had their positions entered in MARKSTAR or in MODPHOT. The
coordinates for the standards must all be at the same epoch.

(One day we will have a precession program.)

COORDS wotrks by solving a least—square relation between the

Page 8%

rectangular coordinates on the image (i.e., Tow and column) and

the spherical coordinates on the sky., You can see Smart’s book for
the formulae, if you dare. The program calculates the coordinates for
every star in the photometry file based on the standard positions you
have entered, including the standard stars. The input positions and
calculated positions for the standards will be displayed on your
terminal, The difference between them should be small and evenly
distributed about zero. If not, one of your inpuft coordinates is
probably wrong. Use MODPHOT €to change that coordinate, and try again.

MAGSTAR COMPUTE MAGNITUDES FOR STARS
Form: MAGSTAR

MAGSTAR finds the apparent magnitude of all the stars in a
photometry file that have had their brightnesses determined with
FITSTAR. Use MARKSTAR or MODPHOT to enter the magnitudes of the stars
which you are using as standards.

The program relates the calculated integtrated brightnesses
and the magnitudes of the standard stars stars using the relation:

MAG = ~2.5 LOG(BRIGHTNESS) + CONSTANT

MAGSTAR solves for the value of the constant by finding a least—-square
relation between the magnitudes and brightnesses of the standards: and
estimates the error in the constant by the scatter of the data points
about the best value. The error in the magnitudes o# the other stars
is computed from the error in the constant and the srror in the
brightness.

The more standards you enter the better the result will be.
The program will work with any number of standards, but the smaller
the number, the larger will be the error in the magnitudes. If you
enter only one standard magnitude, the program will print a warning
message; telling you that the values of the error in the magnitudes
are nonsense.

This assumes: of cpurse, that the magnitudes of the standards
(which are obtained from some catalog}) and the calculated brightnesses
of those stars are actually related by the above formula, The program
PRINT PHOT lists both the calculated and standard magnitudes, so you
tan see whether or not the formula holds. Be careful that the
standard magnitudes are in the same wavelength system as your
abservations. '

Page S0

MODPHAOT MODIFY ENTRIES IN A PHOTOMETRY FILE

Form: MODPHOT)

MODPHOT allows you to change records in a photometry file. The
program asks for the number of the record being changed. You can enter
or change coordinates, the magnitudes of standard stars, or
identifying labels. You can also delete records. You should use
the command ‘PRINT PHOT HARD’ to get a list of the record
numbers before you call MODPHOT!.

A word of warning: The program venumbers the photometry
records if any are deleted. So if you, for example, delete
record 17, number 18 becomes 17, 1% becomes 18, etc.

Page 91

Variables VISTA VARIABLES

The following commands are uvsed to define and display the
values of variables:

SET _ sets the value of a variable, either directly
or in terms of arithmetic operat1ons on other
variables.

TYP displays the value of a variable.
ASK asks for information to be entered at the terminal.
PRINTF formatted printing of variable values and
character strings.
" PRINT VAR .displags all the defined variables.
SET DEFINE A VISTA VARIABLE AND GIVE IT A& VALUE
Form: | SET wvar_name=value
whevre:
var_name is the name of the variable being defined.
valus . it its valvue.

SET defines VISTA variables in terms of numerical constants,
pther variables: or the result of arithmetic operations between other
variables. The name of a VISTA variahble is any alphanumeric string. The
value of the variable is a floating point number. VISTA supports an
internal variable table which holds variables defined by you or as the
cutput of a program. These variables can be used to pass the results of
arithmetic calculations to keywords, to control the flow of a procedure
in IF tests or DO loops, or to store convenient numbers in symbolic
form.

Each SET command can handle up to 15 definitions. Each
definition must include an ‘=’ sign with the name of the new variable to
its left, and a defining expression to its right. The expressions can

make use of any of 5 operations. The operations are simply read left tn.“'

right as in reverse polish notationi no brackets can be used. The
operations are:

+ Add the next variable to the running result,

- Subtract the next variable from the running result
or negate it.

#* Multiply the vunning result by the next variable.

/ Divide the running result by the next variable.

-~ Raise the running rtesult to the next variable.

Page 92

Examples:
1}y SET X=1.07 Sets the value of X to 1.Q7
2) 8BET Y=—X Sets Y to -1.07
3) EGET Z=Y+X - Sets Z to ~1.07 + 1.07 = 0.0
4) BET QR=X"Y+X/Y-Y"2 Q2 is set to:
COCOEX™Y) +X) /Y)Y ~¥)~ 2)
8% SET Y=-2.7182BE12 Sets the value of Y to -2 71828E12

NOTE: All operations are done.in single precision floating peoint.
There must be no spaces between the beginning of ‘var_name’ and the
end of ‘value’.

TYP TYPE A VARIABLE VALUE ON THE CONSOLE
" Form: TYP.var;name

This command can be used fto print out variatle values.
Up to 15 variables can be printed sut at one time,

Example:

SET SKY=1.0 _ ‘
TYP SKY will show ‘SKY = 1.00000‘ on your terminal.

You can get a list of all the defined variables by giving the command
PRINT VAR. ' '

ABK ASK FOR A VARIABLE VALUE ON THE CONSOLE

1

Form: ASK [‘An optional prompt in quotes’l var_name

This command can be usedrto‘request the input of variable values
during the execution of a procedure. When the ASK command is executed,
the prompt will be displayed at the terminal until the requested value

is typed in. If no prompt is given, the command will respond with
‘ENTER wvar_name :‘. Only one value can be requested per ASK command.
Examples:

1) ASK BCKGND will print ‘ENTER BCKGND ! 0N your screen.

When you enter a number and hit RETURN, the
value of BCKGND will be set to the number you
specified,

2) ASK ‘Enter an estimate for the background >> ° BCKGND
will type the prompt ‘Enter an estimate for the
background >> ‘' on your terminal, and wait for you
to enter a number; the value of BCKGND is set to
that number.

Page 93

PRINTF FORMATTED DISPLAY OF VARIABLE VALUES AND STRINGS
Form: PRINTF ‘Format string’ [VARIABLES] [output redirectionl

This command displays chavacter strings and variables in
specified formats, thus producing tables of results.

The simplest €orm of PRINTF is PRINTF ‘string’. This prints
the specified string. Examples are: .

PRINTF HELLO prints HELLO
PRINTF ‘Hello, world’ prints Hella, warld

You can print the values of variables by specifying in the charvacter
string (1) that a variable is to be printed, and (2) the format for
the printing of the variable. The character % in the string does the
Job. It tells that a variable is to be printed where the % appears.
The rest of the word following the % is used to specify the format of
the string. The format specifiers are the same as they are in
FORTRAN. ANY valid FORTRAN specifier apprapriate for displaying
numerlc values may be used.

Examples:.

Suppose we have the variahles A with value 1.0 and PI with
value 3.1415%9. Then '

PRINTF ‘%F4.1 ZF%.4' A PI

prints
£ 1.0 3. 14167
1234 123456789 £-— length and arrangement
PRINTF ‘%I& and %F?. 57 A PI
prints :
! 1 and 3. 1415897
1234564 123456789 <~ length and arrangement

PRINTF ‘The value of pi is %F9.7' A PI
prints '
‘The value of pi is 3. 1415900°
123456789 <—— arrangement

Note that spaces between % specifiers are printed.
The output of PRINTF can be redirected,

Page 94

Procedure INTRODUCTION TO PROCEDURES

VISTA can store several commands in a list and execute them as
a program. A list of such commands is termed a PROCEDURE. The list is
stored in a special buffer, called the ‘procedure buffer’.

Almost any VISTA command that has proper syntax can be
used in procedure. The basic commands for creating, storing., and
modifying procedures are these: :

DEF defines a procedure.
SAME, END end the definition.
PEDIT edits the current procedure buffer.
WP stores the procedure buffer on the disk.
RP reads the procedure from disk.
SHOW displays the procedure buffer
6o begins execution of the procedure.
IDEF., RDEF are uvsed to edit procedures.

There are several ‘control commands’ that effect the operation
of a procedure. S

VER - executes a procedure line by line, %o aid in
debugging. . o '

PA pauses during execution of a procedura.

calLL S runs a procedure as a suvbroutine,

RETURN returns from a procedure used as a subroutine,

DO, END_DO define a loop in a program for-execution a given
number of times,

G070 Jumps to another place in the procedure.

: : defines a place to jump to in the procedure.

IF, END_IF define a block of commands that are executed

only under certain coenditions.
ELSE, ELSE_IF control branching for branching that has many .
aoptions,

Finally, there is the important symbol

" which is used to generate patterns of chavacters,
subsituting them sequentially in lists, thus
allowing permutations of filenames. '

This list serves not only as an introduction te those not
familiar with procedures, but illustrates the flexibility that
procedures give to VISTA programming. A defined procedure eliminates
the drudgery of typing repetative commands over and over, but is does
much move than that: it greatly expands the functions of VIETA so that
new applications do not always require new subroutines, A good
familiarity with procedures will make your data reductions more
efficient and quicker.

Page 95

The VISTA program executes the procedure stored in the file
defined by the DCL symbol V$STARTUP. For example, if you had defined
VESTARTUP through '

'S

DEFINE V#STARTUP [. MYPROCSIMYPROC. PRO

before running VISTA, then L[. MYPROCSIMYPROC.PRO will be executed as
the program begins. Typically, the startup procedure will contain
definitions of aliases, the setting of symbol values, or the reading
into buffers of repeatedly—used images. This procedure is not saved
in the procedure buffer as it is executed. -

DEF DEFINE A PROCEDURE
Form: DEF [line_number]
where: ‘
-linemnumber is the Loptionall line number af the

beginning of the new definition.

This command signals VISTA ¢o begin a procedure definition. DEF
‘will prompt you with a series of line numbers, beginning with the number
specified in the command line. If no number was given, the #first
command will be on line 1. You are to specify a command for each line.
Type the command you want on that line, then hit RETURN. VISTA will
check the command for proper syntax, and store it 'in the procedure
buffer. Then VISTA will prompt you with the number of the next line.
Continue typing commands in until the entire procedure has been entered.
To tell VISTA that you have entered the entire procedure, type END or
SAME (q. v.). '

Examples:

1) DEF begins a procedure definition on line 1.

2) DEF 10 begins a procedure definition an line 10.
Commands on lines i1 through 9, if there
are any, are preserved.

END' ‘ END A PROCEDURE DEFINITION OR EXECUTION
Form: END |

When this command is entered during a procedure definition it
tells VISTA to leave the procedure—-definition mode and to return to the
command—execution mode. The command is also saved in the procedure
buffer and signals the end of the current procedure when it is executed.
If the procedure is executed as a subroutine, the END command, like
RETURN (q.v.), tells VISTA to return to the ctalling procedure.

Page 96

SAME END A PROCEDURE INSERTION AND WKEEP TRAILING LINES

Form: SAME .
When this command is entered during a procedurs definition it

tells VISTA fto leave the proacedure~definition mode and to return to the
command—execution mode. Unlike the END command: however, the SAME
command tells YISTA to keep any lines that may have been defined after
the insertion point, that is, the commands in the buffer following the
insertiaon point are to be left the same as they were before. The SAME
command makes sense only when you are modifying previously defined
procedures, and is not saved in the procedure buffer.

SHOW SHOW PROCEDURE BUFFER
Form: SHOW [output redirectionl

This command lists out the lines or commands held in the
procedure buffer.

Wp : WRITE A PROCEDURE TO DISK
Form: NP_Filenamél’
whare:
filename - is the name pf the éile that will store the

current procedure.

Unless otherwise specified in ‘filename’, RP will write to the directory
ECCD. PROCEDUREI and puts the .PRQO extension on the new file.

Exampleg:
1) WP MEDFLY writes the current procedure to the file
LCCD. PROCEDUREIMEDFLY. PRO
2) WP CDEMOIMEDFLY writes to CDEMOIMEDFLY. PRO
3) WP MEDFLY.XYZ , ~ writes to L[CCD. PROCEDUREIMEDFLY. XYZ-
RP READ A PROCEDURE FROM DISK
Farm: RP filename
where:

filename is the name of the file that holds the

Page 97

desited procedure.

The specified file is read into the procedure buffer. Unless
otherwise included in ‘filename’, RP will read from the directory
LCCD. PROCEDURE] and assumes the £ile has the extension .PRO.

Examples:
1) RP MEDFLY reads the contents of L[CCD. PROCEDUREIMEDFLY. PRO
intoe the praecedure buffer,
2) RP L[DEMOIMEDFLY reads from C[DEMOIMEDFLY. PRO
3) RP MEDFLY. XYZ - Teads {from [CCD, PROCEDUREIMEDFLY. XYZ
GO START PROCEDURE EXECUTION
Form: @0 [loap_countl [filenamel
where:
loop_count - (integer) tells VISTA to execute the
. ’ procedure this many times.
filename o - loads the specified procedure into
‘ the procedure buffer and hegins
execution.

GO tells VISTA to start executing the procedure held in its)
procedure buffer. .You may also simultanesously load a procedure from the
disk and begin execution. In this case, any procedure in the original
buffer will be written over. To call in and execute a procedure without
writing over the main buffer, see the CALL command. The GO command
makes sense only when starting & procedure from the VISTA
command—execution mode. :

Examples:
G0 _ , - _ exe;utes_ﬁhe procedqre.in the buffer,
G0 3 executes the procedure 3 times.
GO FIXIT loads the procedurea FIXIT from the disk,
and begins executing it.
PEDIT EDIT THE PROCEDURE BUFFER
Form: PEDIT

The command EDIT loads the proceudre buffer into
a temporary file in your current directory, then runs a process which
allows you to edit it with the EDIT/EDT edikor. If you leave the

Page 98

editor with EXIT, the modified procedure iz loaded back into the
procedure buffer, but not executed. I# you leave the editor with
QUIT, the procedure buffer is not altered.

As the procedure is loaded back into the procédure buffer, the
lines are not checked for proper syntax as they are in DEF or IDEF:

RDEF REMOVE LINES FROM A DEFINED PROCEDURE
Form: RDEF line_number
whersa:
line_number is the line number you want removed.

You can specify as many as fifteen lines to be removed on the
RDEF command line. After the desired lines are removed, €he remaining
procedure lines are renumbered.

Examples:

1) RDEF 3 removes line number 3.

2) RREF 7 8 9 10 11 12 removes lines 7 through 12, inclusive.
IDEF JINSERT LINES INTO A DEFINED PROCEDURE

Form: IDEF Lline_number]
where:

line_number ig the procedure line BEFORE WHICH
the new lines will go

This command ailows you to insert new lines into & command
procedure. Use the ‘SAME’ command to terminate the new procedure
definition if you do not want to write over the procedure lines

following the insertion. Use the ‘END’ command if you want to delete all

the remaining lines in the procedure. If you do not specify a line
number, the new lines will be inserted in front of line 1.

Example: Huppose the procedure in the buffer is

1 RT 1 4

= BL 1

3 8C 1 0.75

4 TV 1 CF=WRMBE
S END

Typing ‘IDEF 4’ and entering ‘MN 1‘ then ‘BAME’ would change the
procedure to,

Page 99

1 RT 1 4

2 BL 1

3 8C 1 0.75

4 MN 1

b ™ 1 CF=WRMB
& END

I+ ‘END’ had been entered instead of '‘SAME’, the last command would be
number 4,

CaLl CALL. IN AND EXECUTE A PROCEDURE AS A SUBROUTINE
Form: CALL procedure_filename
where:
procedure_filenaﬁe is the name of a file holding

a procedure.

The CALL command tells VISTA to save the. contents of its current
procedure buffer, read in the desired procedure file, and begin
execution at its first line. The CALL command can be executed directly
in the immediate input. mode, or be used inside procedures to call other

procedures, In both cases, at the completion of the called procedure,
VISTA will vreturn properlg to either the input mode or calling
procedure. VISTA will support up to 10 levels or subroutine calls. It

an error occurs while a called procedure is executing, VISTA will unwind
and display the complete subrouvtine stack.

RETURN RETURN FROM AN EXECUTING PROCEDURE
Form: RETURN

This command tells VISTA that the execution of the current
sub-procedure is complete and to return to any calling procedure or to
immediate input mode as is appraopriate. This command is intended to
allow a return #ram the procedure as a result of an IF test. In cases
where no condition testing is needed, the final END command in the
procedure buffer will suffice to tell VIETA that the prncedure has
completed

VER VERIFY AN EXECUTING PROCEDURE

Form: VER ¥ or VER N

VER causes each line of the procedure to be shown on the
terminal Just prior to its execution, allowing you to watch the

procedure work line by line. The keyword 'Y’ turns the display on and
the keyword ‘N’ turns the display off.

Page 100

PA WAYS TO PAUSE DURING A PROCEDURE EXECUTION

Forms: PA ‘prompt message’
ctrl-C

When the PA command is encountered in a procedure, VISTA printe
the prompt ‘PAUSE ‘' #pllowed by the rest of the (opticnal) prompt which
appears on the command line. The execution of the procedure is then
stopped. While paused, you can enter any commands in the normal
immediate mode of execution. To resume the procedure where it paused
type the single letter command C. You do not need to type a command to
permanently halt the procedure. I# you give the command GO any previous
pause state will be canceled, and VISTA will start the program from the
beginning.

You may also pause an executing procedure by typing ‘ertl-c’
{Hold down the ‘control’ and the ‘C’ keys simultaneocusly.) The procedure
will then pause after it completes the operation it is currently working
on. VISTA will also print the next procedure line to be executed so
that you can easily determine where in the procedure the pause occurred.
To resume the procedure where it paused type the single letter command
IC! .

GOTO CJUMP TO A, SPECIFIED PLACE IN A PROCEDURE

Form: GOTD label_name
where:
iabel_ngme is a label defined somewhere else in the

procedure.

GOTO tells VISBTA to jump to a line in the procedure buffer
beginning with label_name:. The label_name can be any alphanumeric
string. You can jump out of but not into a procedure DO loop or IF
block. In the latter cases, VISTA will raise an error conditen and stop
the procedure execution. The jump can bhe in either direction in the
procedure buffer, that is to both higher and lower line numbers,

Example 1: GOTO WHEREVER
Any number of preocedure lines.
WHEREVER:
The next commands to be executed...

Example 2: MNOWHERE:
Any numher of procedure lines..
GO0TO NOWHERE

Page 101

LABEL A& LINE AS A GOTO JUMPING POINT
Form: label_name: .
To label a procedure line as a place for the GOTO command to
jump to, the line must start with the label _name string and a !

immediatly following the label. No other commands can appear following
the label on the same line.

Examples are

1) LOOP:
GOTO LO0OP

2y DO_IT_AGAIN:

GOTO DO_IT_AGAIN'
DO 7 BEGIN ‘DO LOOP IN PROCEDURE
END_DO - END ‘DO LOOP IN PROCEDURE

Form: DO var=N1l N2 [N313
© {any vista commands}

END_DO
_where:
var ~is & variable name,
N1 , is the initial value of the variable,
N2 is the final wvalue,
N3 is the increment by which N1 is adjusted in

each pass through the DO loop.

The DO commands enable you set set up repeatable groups of
commands within the procedure buffer, The VISTA DO-LOOP is very
similar to the FORTRAN-77 DO-LOQP.

The variable ‘var’ is initially set equal to the starting value
N1, When the END_DO statement is encountered the value is changed by an
amount equal to N3. The value of N3 can be either positive or negative,
If N3 is positive then the looping terminates when N1 becomes greater
than N2. If N3 is negative then looping terminates when N1 becomes less
than NZ. I£ N3 is not specified then it defaults to +1.0 if N2 is
greater than N1 or to —-1.0 if N2 is less than NI,

N1, N2, and N3 can all be arithmetic expressions as destribed in
the SET command. The value of ‘var’ can be changed within the loop
without affecting the do~loop operation. However, VISTA will reset
‘var’ to its appropriate loop value at the beginning of each loop.

Page 102

The underline is required in END_DO because VISTA requires
commands to be one word long. Up to 20 do—loops can be nested. Do~loops
are recognized only within procedures. The GOTO command can be used to
Jump out of a DO loop, but VISTA will not permit jumping into one.
Further, DO loops must contain or be contained completly within any IF
blocks.

Example 1 bo 1=1,3
Any number of procedure lines. These lines
are executed 3 times. '
END_DO

Example 2 DO G=1,N
Any number of procedure lines, These lines
are exectued N times. Here M is a variable
“that has had its value set by the SET command.

Example 3 p0 B=D+1I, N~J, —1
Any number of procedure lines. The counter
decrements from D+I to N-J.

END_DO
IF - " YIF‘ CONDITION TESTING AND BRANCHING IN PROCEDURES
ELSE_IF ‘IF’ CONDITION TESTING AND BRANCHING IN PROCEDURES
ELSE ~ /IF/ CONDITION TESTING AND BRANCHING IN PROCEDURES
END_IF ‘IF‘ CONDITION TESTING AND BRANCHING IN PROCEDURES

VISTA procedures allow testing of variables and branching based
on the results of those tests. This capability greatly expands the
usefulness of procedures.

The simplest use of IF is to mark a section of a procedure that
is executed only if come condition is true. It has the form:

IF condition
Procedure lines (any number) that are executed if the
aspecified condition is met.

END_IF

You can also have twpo level branching:

IF conditian
Procedure lines ¢to be executed if the condition
is true,
ELSE
Procedure lines to be executed if the condition
_ is false,
END_IF

Page 103

These may be strung together:

IF contition_1)
Procedure lines to be executed if condition_1 is true.
E1L.8SE_IF condition_2
Procedure lines to be executed when condiftion_1 is
false and condition_2 true. '

ELLSE_IF condition_N
‘Procedure lines to be executed when all conditions
are false except condition_N.

El SE

Procedure lines to be executed if and only if

- all other conditions are false.

END_IF

The tests made by the IF and ELSE_IF statements are relations
between VISTA variables. The possible IF tests are listed belouw The
ELSE_IF tests are identical to these. A and B can represent single
VISTA variables or algebraic expressions involving several,

IF A>B . Test

& greater than B
IF A>=DB o ' Test A greater than or equal to B
IF A=B Test A equal to B ’
IF A™=D Test A not equal to B
IF A<=B Test & less than or equal to B
IF A<B Test A less than B
There are two logical conjunctions & (and) and ! (or) which
can be used tp Jyoin several of the above tests., VISTA simply reads

the tests from left to right. There are no parentheses and no spaces
permitted in the expressions. Examples of the congunctions are below:

IF A>BRA=(Test A > B and A = C
IF A=BiC<D&C=B . Test (A =8 or C < D) and C = B

The syntax of the IF statements is designed to look similar to :
the FORTRAN-77 IF block structures. Each IF block must begin with an IF
command and end with the END_IF command. An algebraic relation between
VISTA variables to be tested must follow the IF on the same line, I#f
the relation is true, then the procedure commands following the IF
command are executed. I# the relation is false, VISTA looks for any
ELSE_IF tests, any final ELSE statement, or jumps to the procedure lines
following the END_IF statement.

The ELSE_IF command also must have a condition to be tested on
the same line, ELSE_IF'’s ave optional. but permit you to test other
conditions and execute other blocks of the procedure buffer in the event

Page 104

that the initial IF or any preceding ELSE_IF‘s are false. In this way
you can allow VISTA to ‘trickle’ down through several tests looking for
one that is true. .

The ELSE statement is also optional and marks a set of procedure
lines for VISTA to execute if and only if the inital IF and any '
following ELSE_IF’s all test out false. Basically, the IF, any
ELSE_IF‘s, or any ELSE statements all mark ocut various blocks of the
procedure to be executed under different conditions. After the
execution of any block, VISTA transfers control to the procedure lines
following the END_IF statement. ‘

IF blocks can be nested within other IF blocks up to 15 levels

deep. IF blocks can be jumped out of, but not into, by the GOTO command.

IF blocks must contain or be contained within DO loops completely.
Some examples of IF blocks are given below:

Example 1: IF XY
Do these procedure lines if X is greater than Y

END_IF

Example 2: IF X>Y&XLZ , '
) Do these pracedure lines if X is greater than Y
but less than Z.
ELSE _ “ _
" Otherwise jump to these procedure lines.
END_IF

Example 3: IF SKY-LIMIT>BACKGRND _
. Do these procedure lines if IF test true.
ELSE_IF BACKGRND=0
: Do these procedure lines if IF test false,
but ELSE_IF condition true.
END_IF '

Page 105

% EXECUTE A VAX ‘DIGITAL COMMAND LANGUAGE’ INSTRUCTION
VAX_DCL EXECUTE A VAX ‘DIGITAL COMMAND LANGUAGE’ INSTRUCTION
Form: % .Any valid DCL command i

You may exectute most VAX commands directly from VISTA by
prefixing them with a ‘%’ sign or with the command ‘VAX_DCL ‘., These
commands can also be included as part of a procedure and can be modified
or updated with the VISTA ‘#’ substitution command,

If the command line is ‘$‘ only, you go into DCL command mode
and stay there until you type ‘logout’, It is dangerous to run large
programs while you are in this mode. When you type ‘logout’, you will
receive a message ‘PROCESS LOGIN_1 logged out at (time of dayl’, where
LOGIN is the name of the account you are currently using..

Examples:

1) %SHOW USERS Exectutes the command ‘SHOW USERS’.

2) VAX_DCL BHOW USERS Does the same thing. '

3y $DIR ECCDI1. CCD Gives a list of the CCD images on disk.

4) % . Go to DCL mode and stay there until ‘logout’

See ‘dcl’ in the section ‘Examples and applications’ for a list of
DCL. commands that might be helpful. '

BELL ‘TURN THE BELL PROMPT ON OR OFF OR RING THE BELL
Forms: BELL Y, BELL N, or BELL R

The VISTA prompt can be accompanied by a bell, if desired.

M prevents the bell from ringing
Y restores the bell with the prompt
R rings the bell

When you begin tunning VISTA, the bell does not ring with the
prompt. The ‘BELL R‘ command is helpful in procedures for signalling the
completion of some process.

Page 106

Sessions SAMPLE SESBIONS WITH VISTA

_ Shown below are several sequences of VAX and VISTA commands
designed to familiarize you with the operation of the VISTA program.
VAX commands are indicated by a %: while VISTA commands are indicated
by GO..

- To run VISTA, €type the VAX command
RUN CCCDEV. BASEIVISTA

Here is a session examining VISTA images and display.
Type these commands in the order presented. After each command, note
what has happened. IMPORTANT: Read the help—~file for each command
before you use 1it.

=== Turn on the AED and run VIETA —-

%DIR L[CCD1. CCD This command looks for all CCD images
on the disk. The % is part of the
VISTA command. As the list of images
scrolls off, pick one of the names.
Suppose you picked M15. CCD. Let’s
- read it into the buffer.
¢d: RD 1 MI15 o . Read into buffer 1.

G0: BUF S) Show list of buffers

GD: cop 2 1 ‘ Copy into buffer 2.

GO: BUF Show bu#fer list,

20: CLOSE 1 Delets image 1.

@0: BUF ‘ Show list of buffers.

GO: CH 2 ‘NEW NAME’ Change the name of the command.

80: BUF NMote the changed name.

G0:; car 1 2 Copy back into buffer 1.

G0: MN 1 Show mean of that image.

G0: TV 1 CF=WRMB Display an the TV.

GO: ITV Interact with the image on the TV.
Use the AED keys (I, 0O, P, R:. €, D, and E}

c0O: @) End of session.

Here we illustrate boxes and the use of the WIND command.
It is assumed that the image we are using has at least 200 rows
and 200 colums. We‘ll play with the image M13, but you can use
any image you like,.

GO: RD 1 Mi5 Load into buffer i.

GO: CoP 2 1 Preserve original copy.

G0: BOX 1 SR=100 SC=100 NC=50 NR=50 Define box 1.

G0O; PRINT BOX Show the box parameters.
G0: MN 1 Take the mean.

GO: TV 1 CF=WRMA 7 Digplay the original image.

Page 107

G0 TV 1 BOX=1 " Show only the image subsection.
G0: WIND 1 BOX=1 Cut douwn the size of image 1, leaving
only the part within box 1 intact,
G0 TV 1 Show the cut—douwn image. This is
the same as the previous image
GO: Q End of session.

. Here is a session exploring VISTA variables and arithmetic
between them, The commands illustrated here are SET and TYP. The
! ‘are used as comments in the VISTA line itsel#f.

G0: SET A = 1.0

G0: TYP A

GO: BET B = 2.0

¢0: TYP B .

G0 SET SUM=A+D ! Result = 2.0

¢0: SET DIFF=A-H ! Result = 0.0

G0O: SET PROD=A%*BE ! Result = 2.0

G0: SET QUOT=A/B ! Result = 1.0

G0: TYP SUM DIFF PROD QUOT ! Show results

GO: SET C=3.0 ,

G0; SET X=A+B+(C . i Result = 6.0

G0: TYP X . ’

¢0: SET X=A+B#C ‘ - ! Result = (1.0 + 2.0Q) # 3.0 = 6.0
e0: TYP X . .

G0: EBET X=A—-DB#({ ! Regult = (.0 - 2.0y # 3.0 = -3.0
e0: TYP X .

G0: SET X=A"R+C ! Result = (1.0 ~ 2.0y + 3.0 = 5.0
c0: TYP X

G0: PRINT VAR ! Show all defined variables

GO: @ : I Halt

The following is an example. of the defining, running: and saving
a procedure. The procedure here prints the squares and cubes of the
first N integers, whevre N is input from the procedure. The commands
illustrated here are ASK, DO. END_DO, SET., TYP, GO, and SHOW.

$ RUN LCCCDEV.BASEIVISTA

&0: DEF

1 ASK ‘Print the squares and cubes of the first N integers, where N = ‘N
2 DO J=L,N ! Begin DO loop

3 SET SAR=N"~2 ! Compute the square

4 SET CUB=N"3 ! Compute the cube

5 TYP N 8GR CUR | Show the result

&4 END_DO ! End DO loop .

7 END End of definition

G0: SHOW Display entire procedure

GO: WP TESTPROC Write procedure to disk
G0D: 60 TESTPROC ! Load procedure and GO
GD: 60 5 TESTPROC ! Run the procedure 39 times

)
' !
GO: ¢O0 ! Run the procedure
]
1

Page 108
Go: @

Fiat FLATTENING AN IMACGE

The pixels in a CCD deo not all have the same quantum efficiency:
if an image were exposed wusing uniform (“flat’) illumnination, the
response would not be uniform. The first step in the analysis of an
“image is to “flatten’ it, to correct for fthe non-uniformity of the
response of the chip. This is done, as with all detectors, by taking an
exposure with uniform illumnation. This is termed the ‘flat-+field’
exposure, Dividing any other image by the flat—field exposure will
correct for the non-uniformities.

CCDh’s, although linear, vusually exhibit what is called a
‘zero-offset’. This means that the first few photons striking a pixel
give no response, Thus:, the function representing the response as a
function on illumination does not have its intercept at zero. To
correct for this zero-offset, you add a constant to each image before
dividing by the flat-field image. The zero-offset can be fowund by
recording several flat-field images that have different illumination,
and noting the intercept of the response vs. exposure time curve.

Here is a procedure for flattening images. MNote the use of
comments in the procedure lines. It reads an image and a flat-field
image from a tape, does the baseline procedure on both, adds the
zero-offset, and divides the image by the flat—-field image. The result
is stored in buffer 1. '

ABK ‘What is the zero offset 7’ ZEROFF ! Get zero offset

ASK ‘Which image do you want 7?7 IMNUM , ! Get image number
- ABK ‘Which number is the flat?’ FLNUM ! Get flat number

RT 1 IMMUM ' ! Read image

RT 2 FLNUM ' ! Read flat image

BL 1 ' ! Do baseline corrections

BL 2

AC 1 ZEROFF ! Add zero offset

AC 2 ZEROFF

MN 2 ! Compute mean

DI 1 2 FLAT - : - S ! Perform scaled division

END End of procedure

Now: image flattening is net really so well-determined. The
above procedure usuvally produces moderately good results, but you may
have to experiment, or talk to an experienced CCD observer to learn all

the lore about flattening images:

it‘’s a bit of an art.

dcl

Page 109

HEL.PFUL VAX COMMANDS TO RUN FROM VISTA

Here are some commands that may be of service:

1) #DIR use the DIRECTORY command €to list images,
procedures and data files.

2) SEDIT use the EDIT command to change (or create!)
procedures and formatted data files.

3) $8HOW QUOTA tells you how much roem you have left an your

account.

4) 4$DELETE/CONFIRM uge this to delete unwanted files from the disk.
- BE CAREFUL!!! to delete only your own files,

only those you do not want.

5) #SET TERM/VTL00 can be used, if not already done,
: terminal to VTI100 status. . This is necessary
and #or the

for screen—editing of files,
PIC, PLOT, and LINE commands.

Index of Commands and Topics

Commands are listed in UPPER CASE.
Topics are listed in capitals and lower case.

Tepic
3

B L e e e e e e e e e e e e e e e e e
P
/A
-8 3 R
- o
- .=
Addition)

Image and constant i

Spectrum and constant ... Lo o oo e

Two images, e e e e e e e e

Two speckTa e e

Two variables e e e e e
AED

See Television i e i e e e
8
7
I - =
AL TN . e e e e e e e e e e e e e e s
APER . . e e e e e e e e e e e e e
Aperture Photometry e
Aperture photometry '

printing results
Arithmetic

Between variables e e e

See also: Addition, Subtraction, etc.

to set your

............
.............
............
............
.............
............

............

.............
I T S T S S R
............
............

............

............
............
............
............
............
............

............
............
............

............

Page

4 = P 58
3 0 105
- b4
Blink comparison : :

Loading the dmages i e e e s e ey 38
B e e e e e e e e e, e e e e 54
Box

Definingo e e e e e e e 54

Properties of image in i e e e A 94
BUE i it e e e e e e e e e e e e e e e e 27
Buffer ' -

D imed . e e e e e e e e e e e e e 1

List of images In .. .o i e e e e e e e 27

_ List of spectra in o o oy e e e e e 28

BUFS e e e e e e e e e e e e e e e e 28
- Y 9g
o 30
L £ P 31
5 T e e e e e e e 48
- Clear screen e 48
o T a2
o T 1 29
Lo O S ST - 40
Calor map :

Defined e e e e e e e 37

Loading T e 40

Make mew map e e A e e e e e e 40
Commands e e e i e e e e a2
Commands . ' :

Defining SURDMYMEottt vnanes .o e e A |

K eUWOT OBt et et e e e e &

Removing synonyms e e e e e e e e e e e e s e 11

Repeat previous command i e e 16

Repeat previous commands e 8

Show list of recent commands, e g

Syntax00 S 2

TYURRS . .t e e e e e e e e e e e 2
o o T 47
Contraol-C

To halt pProcetdUT e ... et et e e e 100
L1 1= as
0 15 26
L 8 27
P L L e e e e e e e e e e e e e e e e 74
Data

o T - 1

Printing ..., L e e e e e e e e e e e e e e e e 33

Printing in flle e e e e e e 9

Printing on lineprinter e e ?

Getting data file, e e e e e e e e 32

Saving data file e e e 32
DG e e e e e e e e e 50
1 = 10%9
1= S PP 52
15X . 995
TR o T R 3 A o 1 - 1
15 5 S 49
Directories

Set default directories e e e 35

Specifying directories for images, etc. Lo 4

Disk

Read image From e e e e e e e e e e 22
Read procedure Prom i e e e e e e e e 26
Read spectrum From ... e e e e 25

Write dmage B0 . o e e e e e e e e 22

Write procedure to e e e e 246
Write spectrum to e e e e e g5
DIGMOUNT . e e e e e e e e e i%
Division '
Image and constant0, e e e e e e e e e 50
Spectrum and constant L. L i e 52
Two images it et e e e e e e e e e e 43
Two spectra e e e e e e e e e o1
Two VAT Lab les i e e e e e e e e 21
o e e e s 101
1 T 21
2% 5 A i2
T 102
22 00— 4 102
22 Y O 95
=l 3 0 T 10 101
END_IF e e e e e e e e e e e e e 102
Exponentiation o
- Twe variables e e e e e F1
Extensions T
Set default for fFiles i e as
EXTINCT A e e e e e 76
Files e e e e e e e e e e e 4
Files ' : -
Default directories and extensions i 35
FITMARI . e e e e e e e e e e e a8
i =10 Y = e L... 86
Flat e e e e e e e e e e e e e e e e 108
T = e 59
FL X i e e e e e e e e e e 79
FLUXGTAR ..ttt et e e it e e e e e e e e 77
BT . e e e e e e e e e e e e 32
GO L e e e e e e e e e e e e e e e e 97
1 o 0 100
o &
[112 1 57
HISTORY T 7
History Mechanism i, e e e e e e e e 8
IDEF e ?8
IF e e e e e e e e e e e e e e e 102
Image
Add another Qimage e e e e e 49
Adding constant £0 . L e e e e 50
Background d1evel ... e e e e e e e 55
Bad pixels —— £ILxINQ i e a2
Baseline correction . L e e e e e e e &4
BUR BT G Lt e e e e e e e e e e e e e e e 1
Changing Mame e e e e e e 30
Columm display ... e e e e e e e e 45
Column display e e e e e 44
6= T T 26
Befined ... e e e e e e e e e e e e e e 1
Deleting from buffer e e 29
Deleting from tape ... e e e 28
Deleting part of ... e e 61

Display in TV L e e e e e e e 38

Display on VTI00 .. . e e e 43

Divide by another iMmage it 49
Dividing by conmstant 50
Flattening e &4
Flattening e e e e e e e e e e e e e e 108
HardCopy ... e e e e 42
Header ... e e e et e e e e e e e 27
High pixel L e e e 56
List those on €ape i e e e 19
Logarithm e e e e . &4
oW PixXel L e e e e e 96
Make sMaller . e e e e e e e e e e b1
== Y T 54
== 2 T I S5a
Median filterT e e e e e b4
Multiply by another image i 49
Multiplying by constant i e 50
Print headers of disk Images i i e e e e 33
frint list of disk ImEAES L e e e i9
Print on Versatbeo ... e e e e e e e e e 42
Print pixel values in e e 33
Processing —— Defined e 1
Properties in selected regions i Sé
Read from diskc....0..n. e e e .. 22
Read from tape e e e e e e 20
Replace by best surface fit L i iaii PP - ¥
Revarse ToOws O COIUMAS L. i e e s et san s b 55
Row display et e e e e e e e e e e e e e e 44
Row display . .t e e e e e e 45
Set defauvlt directory e PR e e e e e 35
Sky level e PP« £+
SmMOO L ANG . e e e e e e s &5
Subtract anotheT IMAge e e e ey 49
Subtracting constant from ... e 50
SUTRACE FLE i i e e e e e e e e a7
Virtual memoTy and e e e e 29
Write to disk e e e e e e e e 22
Write o tape ... e e e s 20
Zeraing nut ... Lo e e e e e e e e 50
ZeTolng Ut ... e 49
0 1Y 2 I I 17
5 - 28
3 1.7 2 40
Jump
IN PROCRAUTES ottt it e st e 100
Keyword
Pattern and value substitution i i i e a8
Keywords
Defined ... e e e e e e e e e e e 2
L AMBD A . s e e e e e e e e e e e e e e e e e 70
Latitude
Entering latitude of observation i 76
A0 | =2 I 44
I 1 21 = o » J O 72
15 &4
Logarithm '
OFf AN IMAGE . . e e e e e b4
Longitude
Entering longitude of observation i 74
MAGE T AR . . ot e e e e e e e e e a9

MARK G TAR i et e e e e e e e e e e 81

MABH &%
AR &3
G S0
O b P
L 49
MN e e e e e e e e e e e e e 24
MODPHOT . F0
MOUNT e e e e e e 18
= R S 51
Multiplicatian 7
Image and constant S0
Spectrum and constant ... L 52
TWwo iMages 49
Two spectra e e e e e e, 51
Two variables e 71
Qutput e e e 17
Output Redirection Mechanism i 9
Output Redirection Mechanism 8
PA RS 100
Pausing
During procedure 1006
8 L e e e e e e e e e e e o7
Photometry e e e e e e e e e e e 80
Photometry '
Coordinates of sbars ag
Entering data .. . @0
Files o i .. e e e e e e e e e e e e e, 88
Files T T 81
Finding brightnesses e e e e e e e e e B84
Locating stars T = =
Locating stars e e e e e e e e e e 81
Magnitudes of stars a9
Modifying filest 0
Point spread function 84
Printing resul®s 33
P 43
Pixel .
Eliminating negative &2
Examining value40
LgnoTing .. &3
Mask . &3
Removing bad &é
PO e, e e e e e e 43
Plot —— conbtour .. 47
Point spread function B84
PR N T 33
PRINTF L 23
Procadure L 24
Procedure
Conditional branching i02
Debugging 99
Defined ... 94
Deleting Yines 78
DO 10apSs . 101
Ending definition @5
Ending definition L &
Ending execUtion a9
Execute .. ?7
Inserting lines 28
Introduction o ?4

Jump 4o subroutine e e e e e e e e e ard

Line by line execution e e e e e e e 99
I e 24
e I A 3 1 98
Pausing during e e e e e e e e e e e e e e e 100
2 1 -2 P v 7-)
Read from disk e e e e e e e e e Q&
Repeating segments of e 101
Return from subroutine o, N 99
L o SOt 97
Specifying filenamas in e e e e i3
Specifying numbers in i e e e e e e e 13
Startup ProcadUTE e e e e e e e e e 4
Startup proocedure . L e e e e e e e F4
Subroutine .. e e e e e e e e e e e e 99
Write to Disk e e e e e e e e e e e e e e e e e e e Gé
L0 I T K o T 95
e e 1T 59
Profile
: Calculating profile i e s e e e 59
Printing regsulEs L. e e e e e e e e e 33
=1 84
B e 7
L 22
CRDEF e e e e e e e e e e e e e e e e, 28
Redivect i v e i it e e e e 9
RETURN ,......, I o e e e e e e e e e e e e e e e e e q7
RP e e e e e e e e C e e e e e e e e e e e e e e 94
RS ... e e e, N as
30 20
o 1 23
o O S
L O 7
L 32
= 1 S e 50
100 o2
=T X - A o - e e e e e e e e e e 106
L] o P S L 91
L I 1 39
=] T 61
] Qb
SI ... e 49
L 25
SKYLINE e e e e e e e e e e e e 74
SO TH . . o i e e e e e e e e e e e e e as
Spectra)
Set default directory ... e e e e e e e e 35
Spectrum ' .
Add constant to . e e e o2
Adding another spectrum . e e e 51
8 T A - - i
Changing Namet e e e e e e e e e e N 31
L e e e 27
Datined ... e e e e e e e e e e e i
Defining flux CUTVE . e e e e e e 77
Divide by constant ..., .. e e e e e e e e e e e e e 52
Dividing two spectra ... L e e e 91
Extinction correction e e e e 76
Flux calibration . e e e e e 79
Headar . e e e e e e e e e e e a8

Identify Linmes . e e e e e e 7e

Mulitplying two spectra e PN - 51

Multiply by constant ... L e e 52
= 45
Plat e e e e e e e e e e 44
Print headers of disk spectra33
Print lime identifications i, 33
Print list of disk images e e e e e e e e e e 12
Print values in e 33
Print wavelength scale 33
Produce FTom Qmage e e e e e e e e e e &<
Read from disk e e e e e ey 25
Read from tape e e e e e e e e e e 23
Subtract constant from ... L 52
Subtracting another spectrum e e 51
Wavelength Recalibration e e e e e e e e e e e e 76
Wavelength scale ... e e e e 73
Wavelength scale e e e e - 70
Wavelength scale —— copying i et et e 74
Wavelength scale — fransforming 75
Write €o disk e e e e e e e e 235
Write o tape e e e e e e e e 24
B e e e e e e e 91
Stars
Coordinates e e e e e e e e e e e 88
Finding brightness S 86
Image shape e e e e e e e e 84
Magnitudes e e e e e e e e e e e (=
Pasitions e e e e e e e e e =1=;
Recording posibions i e e e e aa
Recording positions . . e e e e e 81
Etopping VIBTA e e e e e e 7
Subroutine '
CaLLling . e e e e e e o9
Subtraction
Image and constant e S0
Spectrum and constant ... L e e o2
Two images e e e e e e e 49
Two spectra e e e e 51
Two variables e e e e e e e e e 21
SURF ACE . i e e e e e e e e e e e e e e e e &7
=TT T - 8
Syntax .
More complicated syntax e e 8
2 1 -2 P 17
Tape
Editing i e e e e e e e e e e e e 28
Formats . .. e e e e e e e e e e 17
Itnage On e e e e e e e e e 17
Initializing e e e 28
Listing dimages On e e e i9
MoUntEIiNg . .. 17
MoUnEing .. e e e e 18
Read image FTOM . . . L e e e e e e e 20
Read spectrum from e e 23
Write image to L e 20
Write spectrum to e e e e e e e e e e e e 24
Dismounbing ... e e 13
15 2 1 3 S 19
Television e e e e e e e e e e e e e e e 37

Television

Interacting with image in e 40

Load image @m e e e e e e e 38

Loading color map e e e e D e e 4G

Loading colorm Map . i e e e e e e e e 38
TV e e e e e e e e e e e e e a8
TYR e e e e e e e e e e e e e e e e e e Q2
UNMAL LA L e e e e e e e e e e e 11
L O - |
Variable

Arithmetic between e e e e e 91

Display value with format ..., SPE 93

Displayging value .. e e e e e 92

Introductien to variables e e Q1

Print values ... e e e e e e e e e e 33

Setbing value of . e e e e e e e e 91
VaTiables .. e e e e e e e e e e 91
VAX commands

From VISTA i e e e e e e e e e e e e e 109

From VIGTA . e e e e e e e e e e e 103
VAX_DCL ... e e e e e e e e e e e e e e 105
VER .. o e e e e e e e e e e e e e 99
Versatec

Print dmage On . .. e e e e e e e e e e 42
Virtual memory .

Defined e, e e e e e e e e e e 29

What to do when not enaugh e e 29
VISTA e 1
VISTA : '

Stop e e e e e e e e e e e e e e 7

Running VIGTA e e e e e e 9
VTG e e e e e e e e e e 4z
Wavelength scale

Fur spectrum —— COPYINg L e e e 74

For spectrum —— producing e 70

Fop spectrum —— producing i e 73

For spectrum -—— transforming e e e e e e e 73

Identify Lines FOT . e e e e 72
WD e e e e e e e 22
1 T a4t
WP e e e e e e e e e e e e Q&
O 23
T B 73
L 20
O 24
A bb

	20240716133125444
	20240716134224074
	20240722094849588

