UNIVERSITY OF CALIFORNIA
LICK OBSERVATORY TECHNICAL REPORTS
NO. 34

THE VISTA PROGRAMMER'S GUIDE

Tod Lauer
Richard Stover
Donald Terndrup

Version 2
Santa Cruz, California
May 15, 1984

I. Overview

The VISTA Programmers’ Guide explains the basic operation of the program
VISTA, the philosophy that guided its development, and the procedure for add-
ing new subroutines, It presents a list of common utilities used by the various
subprograms, and a set of instructions for tailoring VISTA to your own needs.

The beginner to VISTA programming has the task of learning the operation
of the program from a user's point of view, then learning the intricacies of the
code itself. We realize this requires some effort (one cannot learn all about it in a
day), but we believe that it is not too difficult for the average astronomer learned
in FORTRAN and experienced with VISTA as a user. This Guide will, we hope,
ease the first steps toward a thorough knowledge of the program.

11. Philosophy

VISTA is an interactive system of routines for the manipulation of two-
dimensional image data. It handles reduction, processing, and display of images,
surface photometry, stellar photometry, and basic reduction of images used for
spectroscopy. It also provides features to make the program easy to use, and to
handle complex or repetative problems.

VISTA was written over a long period of time, during which our under-
standing of CCD’s and our own research interests grew and changed. We also
desired that the program be “public,” so that (1) other astronomers within the
‘observatory could reduce their CCD data, and {2) the program could expand or
change with the needs of its users. Therefore, we have tried to make the routines
as versatile as possible, and to make the main program easily modifiable. New
routines can be added to the program at any time, with a minimum of effort. It is
clear, however, that individuals will need software to deal with research problems
which cannot and should not be included in a system for general use. Therefore,
the program contains routines to write reduced images, spectra, or other types
of data to diskfiles which can then be read by other routines. It cannot be ar-
bitrarily expanded to handle everyone’s needs. Future expansion should be limited
to general-purpose routines for the processing and analysis of 2D direct images,
and to the operations needed to feed reduced data to other software systems.

The main program is 2 simple and fairly general command interpreter that
is independent of most of the details of the subroutines. Those who contemplate
new software systems for analysis of 1D spectra, reduction of echelle images, or
other complex tasks are encouraged to consider using the main routines of VISTA

as the foundation upon which to build these new systems. We have found that
it is easy to build up new systems of software by simply supplying a new set of
subroutines for the program to run.

To futher define principles of operation, we identify some of VISTA's basic

features.

1.

VISTA is a command-driven system, which requires the user to enter com-
mands which are interpreted by the program. Menu systems, on the other
hand, present lists of available programs, asking the user to select from this
list the ones desired. In VISTA it is the user’s responsibility to know what to
do and how to do it. This, of course, is how VAX/VMS operates. It has the
advantage that it permits the greatest flexibility and does not “shoehorn® the
user into a strict or tedious operation procedure. The disadvantage is that
it reqtiires & somewhat greater effort from the uger to learn the operation of
the program. (The VISTA User’s Guide gives instructions.)

" Available routines are called up by their command names. The user specifies

any additional information needed to modify or control the command with
keywords. Routines ask questions only when vital information is missing from
the command line. The user is not pestered with excessive queries, selection of
options, etc. The commands work cleanly with as little interaction as possible,
and have sensible default responses for missing non-essential information. In
some cases, of course, interactive commands are desirable; they are limited
to those that really need run-time decisions. If possible, interactive input
is kept as a keyword activated function. In the routines using an extensive
input list, that list iz in the form of a disk file whose name can be specified
by a keyword. If a task is too complex to be easily accomplished by a single
routine, it is broken into several routines,

VISTA attempts to minimize the profocol needed to operate commands. Most
keywords can be entered in any order, and reasonable default values are given
for unspecified keywords. The program can also run VAX DCL commands,
allowing the user to manage data files or even edit them during a reduction
session. '

The flexibility of VISTA is increased by its procedures, which are lists of
commands to be executed as a program plus special commands which control
the flow of the procedure. These are similar to DCL command files. The
program contains a command language complete with control flow, condition
testing, manipulation of symbols, user-defined subroutines, symbolic image
buffers, and data input. Procedures allow the user to configure VISTA to
handle complex or repetative tasks. This helps to eliminate tedium and to
reduce the need to add new software to the program.

3.

VISTA is “user friendly.” All routines are designed to protect the operator
from basic errors and issue simple but informative messages when non-
recoverable mistakes occur. The routines are written to anticipate or sur-
vive runtime software errors, such as variable overflow, division by zero, or
read /write errors in files. A session with VISTA can go on for several hours,
so an error in the software that causes the program to crash can result in
the loss of a significant amount of labor.

VISTA supports a detailed helpfile system. The user can request information
on a command or subject while running the program, or print out the whole
helpfile as a user’s manual. The format of the helpfile is discussed below.
VISTA is a fop-down software system, meaning that the data reduction routines
receive most of their input from above, and do not heavily depend on an
extensive set of low level utilities. This gives the great advantage that the
subroutines can be easily inserted in or removed from the larger program.
The VISTA software uses all the features available in DIGITAL's FORTRAN-
77, which allows well-structured and legible code, largely free of the obscure

and confusing constructions often required by older versions of that language.

The code is also well documented, and (it is hoped) can be easily understood
by someone needing to dig into VISTA to add new routines or to examine
a program’s operation. We have found that one can do a better job with a
data reduction system if one is working with a clear understanding of how
it functions. It is émperative that new code be clearly documented. Routines
that operate as a “black box” cause confusion and uncertainty when they
need to be changed.

1. How VISTA Works

¢t} The top level

The main program is [CCDEV.BASE|VISTA.FOR. 1t handles all the com-

munciation with the user and with the subroutines. It works as follows:

1.
2.

3.

The program initializes several variables and logicals which control its flow.

The subroutine INITIAL is called, which defines which directories the program
reads from or writes to.

A command is received, either from the user’s terminal or from the procedure

buffer. The logical variable GO i3 set to .FALSE.

4. The command line is separated into the command word, other character
strings, integers, and real numbers. These pieces are loaded into commeon
blocks which the subroutines can read. The commions are declared in the file
VISTALINK.INC, which will be discussed later.

6. The program then reads through the command tree, which specifies the
number of images or spectra needed for each command, their sizes, and
the name of the subroutine to which the program will later branch. The
branching is not done if GO is .FALSE. {The command tree will be described
in more detail below.)

6. When finished looking in the command tree, VISTA.FOR attempts to find
the required images and spectra. If they are not there, an error condition
results, and the program returns to step 8. If all is well, the variable GO is
set .TRUE.

7. The program makes a second pass through the command tree. When it

- enounters the current command in the tree, it calls the subroutine listed
there, passing as arguments the desired images or spectra, and their sizes.

ii) How images are stored in VISTA

VISTA uses dynamic memory allocation, which permits users to connect
images of any size. The memory needed to store an image or a spectrum is not
reserved at compilation time with a DIMENSION statement or its equivalent.
Rather, it is requested from the VMS operating systern at run-time with a call
to a VAX library function in the subroutine CREATEIM. Section iv) discusses
the command tree, where most of the image handling details are treated, and
describes the manner in which subroutines refer to images will be discussed at
length later.

tii) Command parsing

The command line is parsed by repeated calls to subroutine DISSECT,
This subroutine breaks the line into individual words, examines those words, and
returns their values, whether they be integer constants {a number with no decimal
point or the values of certain variables), floating point constants (containing a
decimal point), or alpha-numeric character strings. the various components of
the command line are stored in common blocks defined in VISTALINK.INC. The

first word of the command line is assumed to be the command name, and is
gtored in the character string COM. The values of integer words are stored in
the array IBUF, that of reals in the array CONST, and alpha-numeric words
in the chatracter array WORD. Each of these arrays has fifteen elements, so
VISTA can accept at most fifteen of each type of word on the command line,
Subroutines which are called from the VISTA command tree can examine and use
the values stored in IBUF, CONST, and WORD, which are delared in the file
VISTALINK.INC. This file is shown in Appendix 2.

iv) The command tree

The command ftree is a long series of IF, ELSE II*, ELSE IF, ..., END

IF statements, which test the command entered from the terminal or from the

procedure buffer, In each IF-block, the values of NEEDIM and NEEDSP are set:

they specify the number of images or spectra, respectively, that are passed to the
subroutine. The values of these variables are set to zero at the top of the tree, so
they do not need to be reset if ho images or gpectra are being sent to a subroutine.

An exerpt from the command tree is shown as Appendix 1, The commands
are not actually in this order in VISTA.FOR; we have rearranged them for
illustration. The rules for calling images are as follows:

1. If no images or spectra are required by the commard, the IF-block contains
only a call to that subroutine. The subroutines are designed to return im-
mediately if the variable GO is .FALSE. This is illustrated in Appendix 1 by
the BOX command.

2. If images or spectra are requlred, the call to the subroutine is preceded by
I (GO).

3. The call to a subroutine can pass either one or two images. The location
(memory address) of the beginning of the first image is stored in LOCIM,
and that of the second is LOCB. The first image has NROW rows and NCOL
columns; the second has JROW rows and JCOL columns. In Appendix 1, the
call to ARITHCON passes one image, while the call to ARITH2IM passes
two images.

4. One of the images passed to the subroutme may be already stored in the
AED television system. The location of this image is the value of LOCTYV.
The image has NRTV rows and NCTV columns,

5. If only the television image is sent to the subroutine, NEEDIM is set to -1, If
the television image and another image is being sent, NEEDIM is set to -2.
The other image is located at the value of LOCIM. In Appendix 1, the first

case is illustrated by the call to PSF, while the second is shown in the call

to FITSTAR. |
8. The call to a subroutine can pass either one or two spectra, The location of

the first spectrum is stored in LOCS, and that of the second is LOCSB. The
first spectrum has NSCOL columns; the second has JSCOL columns, The
call to MASH (see Appendix 1) passes one spectrum; the call to ARITH2SP
passes two. If the call to a function has both image and spectrum specifiers
in the command line, all the spectrum specifiers must come before any of the
image specifiers. The variable IMSP tells how many spectrum specifiers there
are in the command line.

The command tree in VISTA.FOR is broken into several INCLUDE calls
to other files that hold part of the tree. This allows blocks of related programs
{spectroscopy, stellar photometry) to be included or excluded in VISTA as desired.
These files have extensions “PGM’ in the directory [CCDEV.BASE].

IV. Writing new subroutines
i) Is o new routine needed?

VISTA is designed so that users can add new programs easily, tailoring the
program to individual needs. It is important, however, that new programs not be
added at such a pace that VISTA becomes unmanageably large, or added without
regard to programs already there, Every consideration should be given to ways
of accomplishing one’s tasks that do not require the writing of a new subroutine,
Specifically: :

1. Can the task be done with VISTA procedures? The procedures were designed
to be as flexible as possible, with conditional branching, loops, etc. Also recall
that DCL commands can be executed directly from VISTA, thus adding the
power of VMS to that of VISTA.

2. Can an existing program be modified by adding a new keyword to the
command? It may be that a new operation is merely a variation on another
routine. Those variations are easily handled with keywords.

3. Is the new task so similar (either in concepts or actual algorithms) to an
existing subroutine that, although it will be run with a new command, the
new code can be included in an existing subroutine? That subroutine can
then be modified to test which command called it, branching accordingly.

4. Can the new program make use of the generic calls GET, SAVE, PRINT or
PLOT? If so, these programs can be modifled by using new keywords in these
suboroutines,

Finally, and most importantly, is the new task of sufficiently narrow interest -
that no other user is likely to use it? If it is, then it can either be run
in a private version of VISTA, or it can be created as a separate program
altogether, using as input the files created by VISTA.

if) Programming style

The subroutines in VISTA have all been written in a style which we hope

makes the programs readable. The importance of this for a “public” program
cannot be overstated, for the usefullness of the program depends as much on its
teadability as on its performance. We fnafst that programs written for VISTA be
written in this style to preserve the readability of the program.

1.

Lol

Use comments extensively! The program should explain itself to the reader.

. We have found that printing the FORTRAN in upper case, and the comments

in capitals and lower case helps one to read the program hetter. Use “in-line”
comments where necessary.

Use logical variables to denote conditions. Do NOT use the value of integers
or reals for this purpose, if you can avoid it.

Avoid the statement GOTO and branching to numbered lines.

Use the form DO ... END DO (rather than DO with a number) to delimit
DO-loops. Indent the code inside each loop. If there are several levels of
nested DO-loops, indent them to show these levels,

Use IF-blocks (IF* ... END IF') to delimit sections of code exectued under some
condition. VISTA programs are often a seties of IF-blocks which test logical
variables. Avoid IF-tests which branch to numbered lines.

Label all variables with a comment describing their use. This should be done
the first time a variable is mentioned in the code, and especially for the
variables in common blocks.

- Remember that the VAX saves the values of variables in a subroutine even

after the program returns from that subroutine. Repeated calls to the sub-
routine, therefore, can avoid some repetative calculations. Common blocks
are to be avoided, except when it is necessary to transfer values from one
routine to another. It is never necessary to create a common block to preserve
constants in a subroutine for future calls to that routine. Since values are
saved after calls to the subroutines, it is important that variables be initial-
ized properly so that “leftover” values from previous calls to a subroutine do
not contaminate new calculations. The values used in initializations should
be clearly stated in the program.

8. Do nof type FORTRAN lines in the old “keypunch” mode, which has the code
beginning in the 7th column, having columns 1-6 containing line numbers
and with the 8th column holding continuation characters, Use the “screen”
mode: {a) the ‘tab’ character ig used before every executable statement;
(b) numbered lines have the tab character following the number; (c) the
continuation character is tab followed by 0 - 8, then followed by any number

~ of blanks or tabs, after which is the rest of the code.

9. Make good use of “white space” (i.e., blanks and tabs). FORTRAN ignores all
space or tab characters. Use blank lines to separate the code into convenient,
easily understood sections. Use blank characters to separate variable names

_ from arithmetic operators.

10. Use variable names of sufficient length and descriptiveness so that the use of
each variable iz reasonably clear from its name. VAX FORTRAN supports
names up to 32 characters in length. Use the underscore character to make
names clear.

11. The beginning of each program has the following format: (2) the first line is
the subroutine call, (b) the second line is blank, (c) the third line is a one-line
description of the program, (d) the fourth line is blank, and (e) there follows
a complete description of the program and how it works. At the end of the
description, include the name of the author and the date of the program’s
last revision,

These standards, if carefully followed, will produce legible code in a style
consistent with current practice, but will leave room for variations in individual
programmer’s style and taste.

~ 185) Interpreting commands

As mentioned above, the main program delivers only images or spectra
with the call to the subroutine. The other information necessary to interpret
a command is contained in the common blocks in 'VISTALINK.INC*, which is
listed as Appendix 2. Study this appendix before reading the discussion below.

The first thing any program does is check the state of the logical variable
GO with the line

IF (NOT. GO) RETURN

Then, the confents of WORD, CONST, etc., are checked to find the condi-
tions under which the program i3 being run. The appropriate logical variables are
set, and then the program begins its execution. Image and spectrum specifiers are
loaded into the IBUF array before execution of the subroutine begins.

There are several keywords which should be the same in all programs:

BOX tells the subroutine to use only a section of the image.

INT tif this subroutine interactively (i.e., the program asks for
information rather than looking it up somewhere).

HARD prints plots on the hardcopy device.

R=m selects row n.

C=n selects column n,

S=n ' selects spectrum n in those programs (like PLOT) which

can operate both on images and spectra.

It is customary, when testing the contents of WORD, to avoid any processing
of the options within the IF-block itself. Rather, the tests merely set logical
variables or error conditions which are later tested. Besides clearly separating
testing and processing, this postponement may speed the subroutine's operation
by beginning computations only if all required information is present.

iv) Referring to images

FORTRAN passes data to subroutines in a manner termed call by reference,
which simply means that the address of a variable or of the first entry in array is
gent to the subroutine, rather than the values of those quantities. When a image
is needed by a subroutine, the address of the beginning of the array is loaded as
the value of an integer. When passed to a subroutine, the value of that integer
is required. The value (instead of the address) can be passed by the Z5VAL()
construction int the call top a subroutine. This address assigned to a variable
name in the subroutine in the usual way: by placing an array name in the same
location in the SUBROUTINE statement as the address is in the call to that
subroutine. For example, the command Al, which adds two images, i3 executed
by a call to

CALL ARITH2IM(% VAL(LOCIM),NROW,NCOL,%VAL{LOCB),JROW,JCOL)

Here the values of LOCIM and LLOCB are the addresses of the two images
which are being added. NROW and NCOL are the number of rows and columns
in the first image; JROW and JCOL are the number of rows and columns in the
second image. The subroutine treates them as arrays {here called A and B):

SUBROUTINE ARITH2IM(A,NROWA,NCOLA,B,NROWB,NCOLB)
DIMENSION A(NCOLA,NROWA)
DIMENSION B(NCOLB,NROWB)

Note that the number of columns is the first dimension of the array in the
subroutine.

Information about the properties of an image is stored in common blocks
defined in IMAGELINK.INC, which is reproduced as Appendix 3, Study this
appendix before reading on.

There are two ways subroutines refer to pixels in an image. In the first
scheme, all references are to the location in the FORTRAN array that holds the
image. The second scheme has the program refer to pixels by CCD image-row
and -coltmn number, These are different because, whereas the FORTRAN arrays
always run from ARRAY(1,1) up to ARRAY(NCOL,NROW), where NCOL and
NROW are the number of columns and rows, respectively, the CCD image-row
and -column numbers have arbitrary origins. Should a DO loop have index running
over row or column number, it i3 necessary to translate from the DO-indices to
the array-indices. This i3 accomplished using the integer variables ISR and ISC,
which hold the starting row number and column number, respectively, for the
first pixel in the image array. These parameters are found in IMAGELINK.INC.

) The work array
VISTA provides a scratch array of size 2662 REAL*4’s to handle temporary
storage of variables. The common block is named WORK. It is prefered that
you use the common block to store intermediate values, rather than creating
new arrays, The common block is used by many VISTA programs, so it will have

garbage in it which must be cleared out at the beginning of any program that
uses WORK,

vi) Missing information and other errors

VISTA commands should contain all the information a subroutine needs to
have to run properly. It is quite common, though, for a user to forget an important
keyword, or to make typing errors in the command. Therefore, ell programs must
have some way of detecting missing information and either notifying the user of
this lack or requesting the desired stuff.

One of the few inconsistencies among VISTA subroutines is the handling of
missing information. Some routines print a message spelling out what is needed
to operate the program then immediately return. Other routines print a message
asking for the missing quantity, then have a READ statement to receive this. We
have generally left it up to the programmer to decide how to handle these situa-
tions. Two comsiderations, however, are of great importance: (1) Any messages

10

requesting information or informing the user of an error must be self-explanatory.
{2) A request for information from the terminal must be general enough so that
garbage or erroneous input is detected.

Extending this last item to a broader principle, we remind the programmer
that run-time errore in a program must not cause VISTA to crash! Two common
errors and their fixes are: '
1. An attempt to open a file that does not exist can be corrected for by using

the IOSTAT keyword in the FORTRAN OPEN statement.

2. Aread-error in a diskfile or from the terminal can be fixed by using the ERR
keyword in the READ statement.

VISTA subprograms usually return as soon as errors are detected, To signal
that the command was not completed successfully, the logical variable XERR is
set .TRUE.

Some programs can be halted when control-C is typed on the terminal.
VISTA sets control-C to run an asynchonous process that sets the variable NOGO
to .TRUE. The state of NOGO can be tested at any point in the program. (Note
that NOGO is different from .NOT. GO!).

vii) The output and error channels
VISTA provides an output-redirection mechanism, whereby data written to
FORTRAN unit 44 can be sent (1) to the user’s terminal, (2) to a file, or (3) to
the lineprinter, The syntax for this redirection is given on the command line and
is handled by the main program. The subroutines do not see this redirection. Use
unit 44 for long output to the terminal (tables, etc.) which the user might want
saved.

Error messages should always be sent directly to the terminal with a ‘TYPE

* ... statement.

viii) Other considerations
When writing a VISTA program, as when writing any computer program
on any machine, one must take care to minimize the memory required by the
program, and to reduce the run-time by proper use of loops and subroutine calls.
There are also considerations unique to FORTRAN on the VAX:
1. Construct DO-loops so that the first index of a multi-indexed array varies
fastest.

11

2. [IF-blocks run faster than IF-statements followed by GOTO. With proper
use of IF, ELSE, ELSE IF, END IF, the GOTO statement has virtually
disappeared from VISTA programs,

3. Use PARAMETER statements to define constants.

A longer discussion of these matters can be found in the VAX FORTRAN
manuals.

iz} A sample VISTA program
Appendix 4 shows a sample VISTA program, ARITH2IM, which is used in
arithmetic between two images. It illustrates many fatures of VISTA programs:
{1) This one subroutine is called by several command names. (2) Each command
has options that may be turned on by the user. (3) The control-low is handled

by logical variables and IF-blocks. (4} The program can handle arbitrary image
sizes.

V. How to add a subroutine to VISTA

Parallel with the instructions below are a set of examples. In these examples,
we show how to add the program ARITHZIM to VISTA.

t) Adding a new subroutine

1. Write the subroutine. It will be helpful if you debug it as much as possible
before trying to add it to VISTA, perhaps by running key sections of the
routine as a separate program. Make the name of the file holding the program
the same as the name of the subroutine itself, if possible. For example, the
subroutine ARITH2IM is found in ARITH2IM.FOR

2. IMPORTANT: Check the two libraries that compose VISTA to see that these
libraries do not already contain a module with the same name as the program
you are adding. The two libraries are CCDVIST in {CCDEV.BASE]| and UTIL
in [CCDEV.BASE.UTILITY]|. Use the commands ‘LIBR/LIST libraryname’

to get a list of the modules in these libraries. In our example, we would
execute the commands

LIBR/LIST [CCDEV.BASE|CCDVIST
LIBR/LIST [CCDEV.BASE.UTILITY|UTIL

12

looking to see that the module ARITH2IM does not already exist in either -
of the two libraries.

2.1 If the module you propose to add is not named in the libraries, proceed
to step 3.

2.2 If the module you propose to add is named in either library, you must
rename the subroutine call to a name not found with LIBR/LIST. Following
step 1, you should also rename the fortran file.

Decide which library your subroutine will be put.

3.1 If the subroutine is called directly by a command, the subroutine will
be added to CCDVIST,

3.2 Is the program a “utility,” i.e., does it perform a function of general use?
If it is, then it will be added to UTIL.

3.3 Otherwise, the program will be added to CCDVIST.
Compile the program using the FORTRAN command. In our example, we
would type

FORTRAN ARITH2IM

4.1 If the program does not compile successfully, fix the problems in it, and
go to step 4.

4.2 If the program compiles properly, continue to step 5.

Add the module you have just created to the desired library.

5.1 If adding to CCDVIST, type

LIBRARY/INSERT [CCDEV.BASE|CCDVIST filename

In our example, this is

LIBRARY/I_NSERTV [CCDEV.BASE]CCDVIST ARITH2IM
5.2 If adding to UTIL, type

LIBRARY/INSERT [CCDEV.BASE.UTILITY|UTIL filename
In our example, this is
LIBRARY /INSERT [CCDEV.BASE.UTILITY|UTIL ARITHZIM
Add the call to the subroutine to the command tree.

6.1 Determine which file of the several that compose the tree will hold the
subroutine call.

6.2 Add an appropriate place in the command tree, add

13

ELSE IF (COM .EQ. ‘somestring’) THEN
NEEDIM = somenumber
IF (GO} CALL SUBROUTINENAME

In our example, we write

ELSE IF (COM .EQ. ‘AT’ .OR. COM .EQ. ‘SI') THEN
NEEDIM = 2
IF (GO) CALL ARITH2IM(%VAL(LOCIM), ...)

Link VISTA. Execufe the command

@[CCDEYV, BASE]LINKVISTA

Debug your program in the VISTA systern

8.1 If it does not work, return to step 1.

8.2 If it seems to work, make sure that it works under all circumstances.
Try omitting keywords, running it with varying image sizes and origins, etc.
Find the helpfile [CCD.HELP]JHELPFILE.LIS. Add a new entry according
to the pattern of entries already there. Place your new entry mear those
for programs that have similar operation. Make your entry a complete set
of instructions for the user. Run the program {CCDEV.BASE|MAKEHELP
which processes HELPFILE.LIS into smaller helpfiles which the VISTA com-
mand HELP reads. (This takes about 4 minutes.) Clean out old versions of
the helpfiles by giving the command PURGE [CCD.HELP].

1) Modifying an exisiing subroutine

Here we again use ARITH2IM as an example.

Make the appropriate changes to the subroutine. Keep the old version of the
program in case you cannot get things to work,

Find which library holds the object code for the program you are working
on.

2.1 If the program is found in [CCDEV.BASE]|, the module will probably be
found in the library CCDVIST in that directory. In our example, il we are
modifying ARITH2IM in [CCDEV.BASE], we can expect ARITHZ2IM to be
found in CCDVIST.

2.2 If the program is found in [CCDEV.BASE.UTILITY], the module will
probably be found in the library UTIL in that directory.

2.3 Confirm the location of the module by typing

14

.

LIBR/LIST {CCDEV.BASE|CCDVIST
LIBR/LIST [CCDEV.BASE.UTILITY|UTIL

and examining the output for ARITH2IM.

Compile the program with the FORTRAN command. In our example, we
type

FORTRAN ARITH2IM

If all worked, proceed to the next step. If not, return to step 1.

Replace the module in the proper library with the object file you have just
created with FORTRAN.

4.1 If the program belongs in CCDVIST, give the command
LIBRARY/REPLACE CCDVIST filename

In our example, this is

LIBRARY/REPLACE CCDVIST ARITH2IM
4.2 If the progam belongs in UTIL, give the command

LIBRARY/REPLACE UTIL filename
Modify the call to the subroutine, if necessary.
Link VISTA by executing the command

Q[CCDEV.BASE|LINKVISTA

Debug the command in the VISTA environment. Follow the cautions listed
above.

If the instructions for operating the new version of the subroutine are different
from old instructions, modify the appropriate entry in the helpfile,

VI. The VISTA helpfile

It is extremely important that each command have complete operating in-

structions in the helpflle. The instructions should be up to date, reflecting the
current operation of the command. No addition or modification to VISTA is com-
plete until the corresponding changes are made in the instructions.

Appendix 5 shows a section from the helpfile containing instructions for the

operation of the subroutine ARITH2IM. When making changes to the helpfile,
follow the pattern displayed in this appendix.

16

The HELP program reads the file line by line. If the line begins with one
of the special characters :, ., {, or /, the program interprets the line in a special
way. Otherwise, the line is assumed to be instructions, and is displayed to the
user ag it is written in the file.

The symbol : designates a subject. The VISTA commands are arranged ac-
cording to these subjects. Examples are “Speciroscopy,” “Stellar Photometry,”
etc. The line following a subject definition must be a command definition.

Lines beginning with ‘.’ denote commands or major topics. The period is
immediately followed by one word (which is the topic), a single space, and several
words that make up a title for that command. The user can receive information on
a command or major topic by issuing the VISTA command ‘HELP topic’. Several
commands can share the same text. The text in Appendix 5 is displayed for the
commands ‘HELP AT, ‘HELP SP, ‘HELP DI, and ‘HELP MI’ .

Following the command definition are several labels which are used only in
the production of the index for a complete listing of the helpfile. '/’ denotes an
entry in the index, and '//’ a sub-entry that will appear under the first. The index
entry and sub-entry must appear on the same line. Either can have more than
one word.

The line $PAUSE halts output directed to the terminal until the user hits
RETURN. This breaks the text into convenient screenfuls. A screenful of text
should contain no more than 20 lines, 5o that a message can appear at the bottom
of the screen.

Lines that begin with { are printed only when the output of the HELP
program is sent to the user’s terminal. If the information is being directed to a

file or sent to the lineprinter, these lines to not appear. Make sure that a screenful
of text delimited by $PAUSE counts these lines!

VII. VISTA'S programming utilities

Since VISTA is a top-down system, its high level routines do not rely heavily
on a set of basic subroutines to perform their tasks. Still, there are a number of
useful utilities which are summarized below. For more information you should
consult the the source code. These should be examined by those writing new
routines. Many of the these utilities, however, are only used by the top structure
of VISTA and some special purpose routines, and need not concern the average
programmer,

16

i) Teztstring, keyword, and parsing utilities

These utilities handle much of the work of the VISTA command interpreter,
and hence are responsible for much of the “feel” of the system. They permit the
user to talk to the routines in a flexible format, and handle the input and output
of text strings. The most important utility is ASSIGN, which handles the task
of interpreting keyword assignments, and is therefore used by most of the high
level routines. FILEDEF is used by routines which work directly with disk files.
VARIABLE allows routines to pass back scalar results to the user level.
ASSIGN is used to parse keywords of the form KEYWORD=EXPRESSION,

returning the numerical value of the expression. Since the
uger routinely specifies parameters to the subroutines with
keywords of this form, ASSIGN is called very often.
ASSIGNV works just like ASSIGN, except that it will calculate the
- values of a list of expressions assigned to a keyword. This
permits the user to pass several values to a routine with
one keyword. For an example of ASSIGNV, see code for
the MASH command, which can be found in MASH.FOR
in the directory {CCDEV.BASE|
DISSECT ig the parser used by VISTA to break a line of text into
seperate alphanumeric words, integers, and floating num-
bers. It is used heavily by the VISTA interpreter and by
other routines which must parse complex strings of text.
FILEDEF is used by all routines which use diskfiles. It takes file names
given and tacks on default directories and extensions if
they are missing from the supplied name. ‘
SUBVAR loads or reads subscripted variables from VISTA's variable
' table. The subscript is actualy a number tacked onto the
variable name. See the code for MN command, located in
AVERAGE.FOR in [CCDEV.BASE]|, for an example of its
use. See the entry below on the VARIABLE routine for
more information.
UPPER is a function which converts character strings to upper
case and returns the number of characters in the string.
This routine allows VISTA to process lower and upper case
entries in the same way. UPPER is an INTEGER FUNCTION,
so don't foget to declare UPPER as in integer in a routine
which calls it.

VALUE is the utility used to parse algebraic statements involving

17

variables. It is used mainly by ASSIGN and ASSIGNYV,
but can be used in any routine where an algebraic string is
entered by itself, rather than as the right side of a keyword
equality.

VARIABLE permits the user to define variables with the SET and
ASK commands, and for routines to load scalar results into
variables for access by the user or other routines.

i) Image and spectrum array utilities

VISTA uses these utilities to get virtual memory from the system, pass the
addresses of image and spectra arrays to the high level routines, and to rearrange
portions of the arrays. The most important utilities are GETBOX and MASK. The
former allows routines to process a subsection of an image, while the latter enables
routines to ignore parts of an image. For the most part, the other utilities are
not commonly used by subroutines, but are used by VISTA itself to get memory
for new images or spectra, and to connect the memory to the high level routines.
These utilities will be needed, however, in routines which generate new images or
spectra from old ones, handle more than two images or spectra at once or which
only process images or spectra as an option selected within the routine itself,
COPIO copies one 2D array to another with a possible offset. It

is intended for use in routines which only have access to
the virtual addresses of the image buffers, rather than the
FORTRAN array elements which hold the image data.
CREATEIM is used by VISTA to setup and get the virtual memory
: needed for new image buffers. It should only be used in
routines which create new images. CREATEIM looks for
the image specifier in the IBUF array; it needs to know
which image specifier to use (for example: create an image
using the second image specifler on the command line.}
It then calculates the amount of memory needed for the
image array and attempts to get it from the system. If
successful, it loads the parameters of the new image into
the common blocks keld in the IMAGELINK include flle.
CREATESP works like CREATEIM, but defines new spectrum buffers.
GETBOX is used by all routines which have the option of processing a
subset of an image within a user-defined BOX rather than
the whole image. The GETBOX utility compares the size

18

and origin of the image to that of the desired box, and
returns the origin and number of the rows and columns of
the image to be processed.

GETIMAGE is used by VISTA to pass the addresses of the image arrays
to the high level routines. 1t also loads a list of parameters
describing the images into a common block for easy ac-
cess by the routines. GETIMAGE looks on the command
line to find which image buffers to pass to the routine.
GETIMAGE should only be used in the cases where VISTA
cannot pass the addresses to the routine, such as routines
that must operate on three or more images at once, or
routines that only process images as an option (such as the
PRINT and PLOT commands).

GETSPEC works just like GETIMAGE, but for spectra.

MASK tests if a given pixel within an image is “masked out,” (i.e.,
to be ignored in a calculation).

SPECTRANS works like COPIO, but for spectral arrays.

iii) FITS header roulines

VISTA uses FITS headers to contain the information and parameters as-
sociated with images, spectra, and other data. A FITS header is a long character
string which contains a set of keywords to identify various parameters, such as
the size of an image, its label, date of observation, ete., and the values of the
parameters. VISTA uses the utilities below to look up, set, or print out the values
of the various parameters stored in the header. For more information, see a FIT3
manual,

GETHEAD is a package of three functions, IHEAD, FHEAD, and CHEAD
which look up and return integer, floating, and charac-
ter parameters, respectively, held in a FITS header. Note
that VISTA already provides the high level routines with

‘ the sizes and origins of the images and spectra.

GETHJID reads the FITS header and calculates various parameters
of the observation, including the heliocentric Julian date,
the air mass, etec. All routines which need such information
should use GETHJID.

HEADER prints out a formatted image header.

19

HEADSET

SPHEADER

is a package of three utilities, INHEADSET, FHEADSET,
and CHEADSET to load integer, floating and character
parameters, respectively, into a FITS header.

works like HEADER, but for spectra.

iv) Mathematical utilities

There i8 no standard mathematical library that VISTA uses, nor is there a
well defined set of routines that handle the computational needs of the higher

level reduction routines. There are, however, a few common problems which are
handled by these utilities:

BIN
FINDCENT
GNLLS
MEDIAN
SINCGEN

SOLVE
SPLINE

contains a number of routines for doing random-access 2D
image interpolation. The different routines trade off varions
degrees of speed for numerical accuracy.

finds the centroid of an object in an image.

is a general routine for handling non-linear least squares
fitting of functions.

uses a quick-sort algorithm to find the median of a 1D
array.

is used for high-accuracy 1D interpolation.
solves a linear system of equations.
produces a 1D spline on a set of points.

¢} Graphics

VISTA uses the MONGO package for its graphics, There are, however, a few

useful utilities:
TIAMVT100

VTG100

finds out if the user is on a VT100 terminal. It should
be used by all graphics routines to avoid sending graphics
commands to non-graphics terminals,

is a complete package of low-level VT100 graphics routines
written by Richard Stover. It contains routines for vec-
tor and text plotting, and interactive routines using the -
VT100's internal cursor.

20

MATHCRASH

WAIT

vi) Miscellaneous

enables routines to recover from mathematical errors which
would otherwise cause VISTA to crash. |

tells the VAX to put VISTA in hibernation for a specified
period of time. It is used to avoid tying up the CPU by
routines running in loops waiting for asynchronous input.

VII I/O routines

We list here the subroutines used by VISTA for input and output. Knowing
the details of the file and tape format for images or spectra may be helpful when
using VISTA in conjunction with otther programs. For example:

1. If you wish to read CCD data from other institutions the image must be
written in FITS format. Otherwise, you must write a program to convert the
the data to the format used in VISTA.

2. If you wish to write a package of specialized programs having applications
that are not of interest to others, you will need know the formats of VISTA

output.

The input and output routines are these:

WRITE
READ
TAPE
TAPEDIR
DISK
DISKSP
SAVE

writes images to tape.

reads images from tape.

initializes magnetic tape before writing,

prints a directory of images on tape.

reads images from or writes them to the disk.

reads spectra from or writes them to the disk.

writes and reads various datafiles. Read the code here to
find the format of files for aperture photometry, stellar
photometry, brightness profiles, and lists of masked pixels.

VIIL Tailoring VISTA to your own needs

This section reviews some techniques for adjusting VISTA to suit your par-

ticular applications.

21

t) Deleting routines
VISTA is a very large program, containing quite a variety of subroutines for
image processing and analysis. It may be that you will never need certain sub-
routines for your applications. You would then want to reduce the size of VISTA,
making it contain only what you want. The procedure for deleting subroutines
is:

1. Select the routine you want to delete from VISTA, and find the call to that
routine in one of the files composing the command tree,

2. “Comment out” the statements in the command tree pertaining to that
command: Le., put ‘C’ or *!" at the beginning of those statements, thus turning
them into FORTRAN comment lines. It is preferable that you comment out
the lines, rather than delete them, because you might want to restore the
command someday.

3. Relink VISTA by giving the command

- @Q[CCDEV.BASE|LINKVISTA
It is not necessary to alter the linker libraries in any way.

ii) Defoult directories

VISTA keeps a list of directories and file extensions for various images,
spectra, or data files kept on the disk. It automatically searches in these directories
unless overridden by the user.

The directory list is created by the subroutine INITIAL, which is executed
when VISTA is first run. It reads a set of DCL logical names which specify the
directories, If these logical names are defined, VISTA takes them as the names of
the default directories. If they are not defined, the program uses the directory
structure used at Santa Cruz. File extensions cannot be defined in this way, but
may be changed while VISTA is running with the command SETDIR.

The logical names which INITIAL tries to translate are:

V$CCDIR images

V$PRODIR procedures
V$SPECDIR spectra

VSFLUXDIR flux calibrations
VSLAMBDIR wavlength calibrations
V$COLORDIR color files for TV
VS$DATADIR data files
VS$HELPDIR the help file

Use the DCL command DEFINE to define these logical names. As an ex-
ample, to re-define the image directory to [MYACCOUNT.MYDIR], type

22

DEFINE V$CCDIR {[MYACCOUNT.MYDIR]

The names of the default directories are stored in common blocks defined
in CUSTOMIZE.INC, In addition, VISTA tries to translate V§STARTUP, which
defines a file containing a procedure to be run automatically as the program
begins. Also the symbols VSLONGITUDE and VSLATITUDE may be used to set
the location of the observatory at which images were taken. The longitude and
latitude are expressed in decimal degrees,

23

st APPENDIX 1 s#ss#a

This is a segment of the VISTA command tree, showing the
various types of subroutine calls.

IF (COM .EQG. * ‘3 THEN ! Null
CONTINUE

EL.SE IF (COM . EQ. ‘BOX') THEN ! Define boxes
CALL BOXSET

ELEE IF (COM .EQ. ‘MC* .0OR. COM .EQ. ‘DC’) THEN ! Multiply or
NEEDIM =1 ! divide by
IF (GO} CALL ARITHCON(YVAL (LOCIM), NROW, NCOL) ! constant

ELSE IF (COM .EG. "Al‘ ,0R. COM .EQ. "SI’} THEN t Add or
NEEDIM =2 P gubtract two
IF (G0} CALL ARITH2IM(YXLVAL(LOCIM), NROW, NCOL., ! images

i ‘ VAL (LOCE} » JROW, JCOL.)

ELSBE IF (COM .EQ. 'PSF’) THEN ! Point spread fci
NEEDIM =-1
IF (GD) CALL PESF(ZVAL(LOCTV, NRTV, NCTV)

ELSE IF (COM ,EQ. ‘FITSTAR’) THEN ! Gtellar
NEEDIM = -2 ! magnitudes
IF (GD} CALL FITSTAR(UVAL(LOCTV), NRTV,NCTV,

1 “VaAL (LOCIM} , NROW, NCOL)

INCLUDE ‘OTHERCOMS, PGM - . ! Other commands.

ELEE IF (COM .EQ. ‘MABH’) THEN ! Extract spectrum
NEEDIM =1 :
IF (G0O}Y CALL MASH(ZVAL(LOCIM): NROW, NCOL)

ELSE IF (COM .EQ. ‘A%’ .0OR., COM .EQ. '887) THEN ! Add ov
NEEDSF =2 I gubtract two
IF (GO} CALL ARITH2SP (VAL (LOCS), NGCOL, { spectra

1 wVal(LOCSBd), JBCOL)

END IF

iy APPENMDIX 2 #ita#d

This ig¢ the file VISTALIMK. INC, which tontains parameters passed from the
top pragram of VISTA to the subroutines,

c HH% VISTA KEYWORDS, PARAMETERS, AND CONTROL W
c This include file controls communication between VISTA and
c its subroutines.
c FParametars: NCON The maximum length of the VISTA
c integer, constant, and keyword buffers.
c MAXPRO The maximum number of lines in the
c VISTA procedure buffer,
PARAMETER (NCON=13, MAXPRO=100}
C These variables pass constants and keywords to the subroutines.
c Variable: CONET Floating constants buffer
C IBUF Integer constants buffer
c WORD Keywords and alphanumeric buffer
c cam Current VISTA command
G COMMAND Full input command line
DIMENSION CONST(NCOM), IBUF({NCON)
CHARACTER#80 WORD(NCON), COM, COMMAND
COMMON /VISCON/ CONST, IDUF
COMMON /VISALPH/ COM, COMMAND: WORD
C These logical variables centrol subroutine program flow.
c Variable: 0 et by VISTA to start £he subroutine
C CHECHK Sat FALSE. in subroutines teo indicate
c an ervor in input before VISTA sets GO.
c XERR Set ., TRUE. in subroutines when an srrov
C oeccurs during execution. I+ the error
c is severe enaough, the routine should
C imediately return to VISTA,
c NOGO Set . TRUE. when Ctrl-C is entered #rom
C the keyboard. Subrputines can check
G this at any desived point, and return
C if set.

LOGICAL GO, CHECK: XERR, NCOGO
COMMON /CON/ GO, CHECK: XERR, NGGO

C Authar: Tod R. Laver 11/5/82

#3434 APPENDIX 3

This is the file IMAGELINK. INC, which holds parameters that describe
images in VISTA.

C HH IMAGE PARAMETERS. ADDRESSES, AND CONTROLS HH#

C This include file contains common hlocks holding image

¢ parameters, labels, and virtual addresses.

C The MAXIM parameter caontrols the maximum number of images that
G can be handled by VISTA.

PARAMETER (MAXIM=10)

C The MAXR and MAXC parvamefers give the maximum number of columns
G and rows in a CCD image.

PARAMETER (MAXR=1024, MAXC=102Z24)

C Each image has a list of parameters specifying such things
c as its size, conditiens of observation, reduction history,
C identifications, and.other information deemed important.
C The list for each image is held in the array HEADBUF.
C The HEADBUF for each image is divided into a set of 72 ‘cards’,
¢ each of which is 80 celumns long, Each parameter ig located
c on a seperate card, identified by a keyword at the start of the
[# card.
CHARACTER#57&(HEADBUF (MAXIM)
COMMON /IMGUBJ/ HEALRBUF
C VISTA images are arrays of 2-D floating-point numbers. The
c size of the array in each dimension, origin in each dimension,
C and compression factor in each dimension, are extracted from
C HEADBUF and held in the integer array ICOORD for convenience.
[The locations of the various parameters in ICOORD are defined
c by the following parameters,
PARAMETER (N_ROW = 1)
PARAMETER (N_COL = 2)
PARAMETER (I_BR = 3}
PARAMETER (I_8C = &%)
PARAMETER (I_CMPR= 35}
PARAMETER {I_CHMPC= &)
DIMENGICON ICOORD (&4, MAXIM}
cCOMMON /IMGH/ ICUORD
H Each image connected with VISTA is assigned an integer image number
c which is greater than O and less than or equal to MAXIM. An array
c of logical variables and addvesses define the current state of each
c image number,

Variable: BUFF (IM} Set . TRUE. if the image number ‘IM’
is connected.

(e N o]

[+ReNsNoN s RN+ N By

OO0 0 aaon

LOGC(IM) Contains the virtual address ot image
number ‘IM’.

NBYTE(IM} Contains the number of bytes accupied
by the image.

BUFOLD Set .TRUE. it a block of virtual
memoery 1is to be returned.

LOCOLD The address of the returned memory.

NBOLD The ammount of returned memory.

IMCREA New image buffer number

LOGICAL BUFF{MAXIM), BUFQOLD
INTEGER LOC(MAXIM}, NBYTE(MAXIM)
COMMON /IMG/ BUFF, LOC. NBYTE, BUFGLD, LOCOLD, NBOLD, IMCREA

Parameters can be passed to subroutines by use of the IMGPIPE comman.
The common holds the variables needed to specify the condition and
origin of the image data array for a maximum of two images, numbered
‘IM‘ and ‘JM’,

VVariable: - IS8R Image starting row =0
I8C Image starting column >=0
IRBX Row compression factor 2=1
IRCX Column compression factor =1

COMMON /IMGPIPE/ 1SR, ISC, IRBX., ICBX, IM, JSR., JSC., JRBX:. JCBX. JM

Author: Tod R. Lauver 11/23/82

0O 0 e s N RsEsExN ¢! %]

(o] OOOaon

gaasd APPENDIX & stsratars

Hevrs is a sample VISETA routine.

SUBRQUTINE ARITHZIM(A, NROWA, NCOLA, B, NROWE, NCGOL D)
Routine to add, swbtract, multiply and divide two images

This routine handles all double image arithmetic.

Images are compared to find their region of overlap: based

on their origins, offsets, and boxes. No operation is carvied out
on portions of the image that do not overlap. The signs

of the offsets are such that rows or columns in 3 match with

the same row and column numbers in A PLUS the offsets

Commands: Al Add image B to image A
SI Subtract image B from image A
MI Multiply image A by image B
DI Divide image A by image B

Keywords: DR=n Offset image B by ‘n’ rows

: DC=n Offset image B by ‘n’ columns

BOX=n Only vuse portion of image B within box
DARK Bubtraction is scaled by exposure
FLAT, Division is rescaled by image B mean

Auythor: Tod R. Lauer 1os17/82

INCLUDE 'VISTALINK, INC’ ! Communication with VISTA
INCLUDE ‘IMAGELINWK. INC’ ! Image parameters
DIMENSION A(NCOLA, NROWAY, B(MCOLB, NROWB)

CHARACTER#8 PARM

INTEGER ROW, COL., DX, DY. SR, ER, 8C, EC, BN

LOGICAL DARK, FLAT

Check command string
IF (.NOT. GO} RETURN

Select parameters

DX =0
DY =0
BN =0
F =1.0
DARK =, FALEE.
FLAT =. FALSE.
Da I=1, NCON
IF (WORD(I)(1:3) .EG. 'DC=') THEN ! Column offset
Call ASSIGN(WORD(I).F.PARM)
IF (XERR} RETURN
DX =JNINT(F)
END IF
IF (WORD(I)(1:3) .EQ. ‘DR=‘} THEN ! Row offset

CALL ASSIGN(WORD(I).F, PARM)
IF (XERR) RETURM
By =JNINT(F)

[s R+ N e!

END IF

IF (WORDC(IM)(1:4) .EG. ‘BOX=’) THEN ! Subsection specified
CaLl ASSIGN(WORD(I), F, PARM?}
IF (XERR) RETURN
BN =UNINT (F)

END IF

IF (WORD(I) .EQ. 'FLAT’) FLAT =, TRUE.

IF (WORD(I) .EQ. ‘DARK’} DARK =. TRUE,

END RO

Compare the dimensions, origins: and offsets of the two
images, to find their overlap., The arithmetic will only
be performed on that section,

IF (IRBX .NE, JRBX ,0OR. ICBX .NE. JCBX) THEN

TYPE #, "The images have diffeving compression factors...
XERR =, TRUE.
RETURN

END IF
Get box parameters

IF (BN .EG. O) THEN
JBSR =J8R,
JBEC =J&C
NBROWE =NROWB
NBCOLEB =NCOLB

ELSE :

CALL GETBOX(BNM, ICOORD(1, JM), BR, 8C, ER, EC, NBROWRE, NBCOL.B)

IF (XERR) RETURN

" JBSR =GR+JSR-1

JBEC =5C+J8C—-1
END IF
SR =MAXC(ISR-DY, JBSR}+1-JBER ! Starting row
ER =MIMNO (ISR+NROWA—DY, JBER+NBROWE) —JRBESR { Ending row
=1 =MAXDO(ISC-DX, JEGC}+1-JBEC { 8tarting column
EC =MINC(ISC+NCOLA~-DX, JBSC+NBCOLB)~-JBSC ! Ending column
by =DY+JASR-ISR
DX =DX+JBEC—ISC
IF (ER .LT. S8R .0OR. EC .LT. 8C) THEN

TYPE %, "The images do not ovevlap... '

XERR = TRUE.

RETURN
END IF
CALL SUBVAR("M’: IM, AV1, . FALSE.) | Get image means for later
CALL SUBVAR{ ‘M‘, JM. AVZ, . FALSE. } ! updating

Branch to specified operation
IF (COM .EQ. ‘AI’} THEN
Add the images

DO ROW=SR. ER
Do CoOL=8C, EC

A(COL+DX, ROW+DY) =A(COL+DX, ROW+DY)+B(COL, ROW?}
END DO

END DO

AVL =AV1+AV2
CALL SUBVAR(’M‘, IM. AV1, . TRUE.)

ELSE IF (COM .EG. ‘SI‘) THEN

Perfarm normal or dark subtraction

IF (DARK} THEN ! Bcale subtraction by exposure
Tt =FHEAD ("EXPOSURE *, HEADBUF (IM))
T2 =FHEAD ("EXPOSURE ‘, HEARBUF (JM))
F =T1/7T2

DO ROW=8R., ER
po COL=8C, EC
A{COL+DYX, ROW+DY Y =A (COL+DX, ROW+DY Y—-F%B (COL, ROW!

END DO
END DO

AV1 =AVi~-FRAVZ
CALL SUBVARC ‘M‘, It AVL, . TRUE.)

ELSE ! Normal subtraction
RO ROW=SR, ER
po COL=8C, EC
A(COL+DX, ROW+DY }=A(COL+DX, ROW+DY) ~B (CAL, ROW)

END DD
END DO
AVl =AVi-av2
CALL SUBVAR(‘M’, IM, AV1,. TRUE.)
END IF
ELSE IF (COM .EG, "MI‘) THEN T Multiply images

DO ROW=SR. ER
b0 COL=8C, EC
A(COL+DX, ROW+DY) =A(COL+DX, ROW+DY) #B (COL., ROW)
END DO

END DO

IF (AVZ . NE. C. 0} AVI=AVIH#AV2
CALL SUBVAR(M’ IM, AVL, . TRUE, }

ELSE IF (COM .EG. ‘DI‘} THEM

Check for zeros and then perform division. Pixels where divide
by zero is attempted are zeroed out themselves.

IF (FLAT .AND. AV2 .NE. 0.0) THEN ¢ Scale factor is image 2 mean
F =AV2

ELSE IF (FLAT} THEN ! Caleulate image 2 mean
SUM =0. 0

DO ROW=SR, ER
po coL=sC, EC

SUmM =8UM+B(COL., ROW)
END DO
END DO
F =8UM/FLOATJ((ER-SR+1)% (EC-8C+1)}
CALL SUBVAR('M’, JM, F.. TRUE.)
IF (F .EQG. 0.0) F=1.0
ELSE
F =1.0
END IF

DO ROW=ER, ER
b0 COL=8C., EC
IF (B(COL.ROW: .EG. O. 0) THEN
A(COL+DRX, ROW+DY)=0.0
ELEE
_ A(COL+DX, ROWHDY) =F#A(COL+DX, ROW+DY} /B(COL, ROW)
END IF
END DO

END DO

IF (AV2 . NE. 0.0) AVI=F#AV1/AV2
CALL SUBVAR(‘M, IM, AV1, . TRUE.)
END IF

RETURN
END

#itsn APPENDIX S #aa#

Shown here is a segment from the VISTA helpfile.

TARITHMETIC ON IMAGES AND SPECTRA
.Al ADD TWO IMAGES

.81 SUBTRACT TWO IMAGES

.DI DIVIDE TWO IMAGES

.MI MULTIPLY TWO IMAGES
faddition//Two images
/Subtraction//Two images
/Multiplication//Two images
fDivision//Two images

/lmage//Add another image
/Image//Subtract another image
/Image//Multiply by another image
/Ilmage//Divide by another image

The commands that perform arithmetic between two images are:
&I dest source [BOX=nl [DR=nl [DC=nl] (dest=degst+source)

81 dest source [BOX=nl] [DR=nl] L[DC=nl) [DARK] (dest=dest~[Ts/Tdl¥#source}
DI dest source [BOX=nl [DR=nl] [DC=n] L[FLAT] (dest=dest/sourcel#source meanl}

MI dest source CBOX=nl] LDR=nl [DC=nl {(dest=dest#source)
where:
dest ' {integer or % construct) is the buffer

holding the one image and also specifying
the buffer where the result will be stored,

source {integer or % construct) is the other
image used in the arithmetic,

BOX=n uses only that portion of the source image that is
in box ‘n‘,
DR, BC ~shifts the ‘source’ image before doing the arithmetic.
£PAUSE
{Al dest source [BOX=nl LDR=nl] EDC=nl (dest=dest+source)

{81 dest source [BOX=nl [DR=nl] f{DC=n} [DARK] (dest=dest—-[Ts/TdIi%¥source)
{DI dest source [BOX=nl [DR=nl EDC=nl LFLAT] (dest=dest/sourcel#source meanl)
{MI dest source EBOX=nl [DR=nl] EDC=nl {dest=dest#saurce)
£
Note that the result of the arithmetic operation is stored
in the first location mentioned on the command line! The syntax of
these commands is

OPERATE ON (image 1} WITH (image 2}

The operations are done on a pixel-by-pixel basis so that
pixel (I.J) of the ‘dest’ image is combined with pixel (I,.J) of the
‘source’ image. ‘DR’ and ‘DC’ can be used to specify an optional
aoffset in number of rows or econlumns of the source ilmage when it
aperates on the destination. ‘DR’ and ‘DC’ can he neagative as well as
positive, but will be rounded to the nearest integer. The result is

that row ‘I‘ and column ‘g’ of the source operatas an row ‘I+PR’ and
column ‘J+DCY of the destination. IMPORTANT: I+ the images do not
dverlap exactly, only those pixels in the destination image that are
also in the source image are effected by the operation. The other
pixels are not thanged!

$PAUSE |
{AI dest sourcs LBOX=nl C[DR=n3] [DC=n] (dest=dest+saurce) ;
{8I dest source EBOX=nl C[DR=nl] EDC=n] [DARK] (dest=desthT5/TdJ*suurce)
DI dest source [BOX=nl EDR=nl [DC=nl] CFLAT] (dest=degt/90urcet*sourceAmeanl)

! {MI dest source CBOX=n] {DR=n] [DC=n] (dest=dest#*source)

i £

It the aptional keyword FLAT is included in the DI command,
the resulting image is multiplied hy the mean of the image in the
‘saurce’ huffer. The mean is NOT Computed by the DI command, but must
be computed with the MN command ahead of time. I+ the optional keyword

4 DARK is included on 8I command line, then the source image is scaled

i by its exposure time relative to the destination image before the
subtraction. These two operations preserve the mean of the
destination image.

Examples:
; ALl 2 1 adds image 2 to image 1 and stores the
! result in image 1,
i
| SPAUSE
l DI 2 3 FLAT ' divides image 2 by image 3, then scales
r : the result by the mean of image 3. This
' preserves the mean of image i,
Al 4 7 DR=4 pC=-10 add image 4 to image 7, bur first shift
image 7 by 4 rows and by —-10 columns.
The pixels in image 4 that are alsag in
image 7 will contain the sum, The
pixels in image 4 that are NOT in
image 7 will not be thanged.
Al $IML $IM2 add image IMI to IM2, where IM1 and IM2

ara variables. (This ig helpful in
proceduras,)

