UNIVERSITY OF CALIFORNIA
LICK OBSERVATORY TECHNICAL REPORTS
No. 45

THE COMPUTER CHOICE
FOR
LICK OBSERVATORY

by
RICHARD STOVER

Santa Cruz, California
October 1985

The Computer Choice
for
Lick Observatory

I. Introduction

Choosing the best computer system for CCD data acquisition,
program development and on-line data processing, is not a simple task.
We are currently using the Digital Equipment LSI-11/73 CPU. While
this is a good CPU, its use has several serious limitations. First, it sup-
ports only 16-bit logical addresses, which means that the executable code
or data in a single program can total no more than 65-kilobytes. Fur-
thermore it has no additional hardware to support virtual addressing so
that various schemes to implement extended addressing tend to be very
inefficient. We have expended an enormous programming effort trying
to work around this CPU addressing limitation, and the ever increasing
CCD dimensions make the task harder and harder to accomplish.

A second serious limitation of the I.8I-11/73 is that it uses the
Digital Equipment Q-bus backplane. The Q-bus uses only 22-bit physi-
cal addresses, so the maximum memory supported is only 4 megabytes.
Currently we are using 3 megabytes of memory to store CCD images
in floating-point representation so that our SKY array processor can be
used with optimum performance. This is enough memory to store only
one 800X800 CCD image (2.56 megabytes). With the new 2048X2048
CCD, at least 8 megabytes are needed to store even a single image in
16-bit integer representation, and 16 megabytes are needed to store it
in floating-point representation. With today’s very low memory prices,
16 megabytes is a very reasonable amount of memory to support.

Another disadvantage of the Q-bus is that it is relatively slow,
with the ability to transfer only about 800-kilobytes per second over the
bus. This low bus bandwidth is the primary limitation on our ability
to rapidly process CCD image data. It places the ultimate limit on the
CPU and array processor performance and it limits our Winchester disk
throughput, since the disk has the ability to transfer data faster than
the Q-bus can handle it.

From our experience with the LSI-11/73 system we have come
to realize that a single computer running a single operating system may
not be able to fulfill all of the diverse and divergent requirements. We
have learned that in CCD data-acquisition and -processing applications
we often want dedicated CPU usage to deal with high speed bursts of
input from hardware devices concurrently with the multi-user/multi-

process advantages of a sophisticated operating system. The efficient
real-time processing of CCD images also requires a large physical mem-
ory along with a corresponding large physical address space. In the
past, when memory was expensive, virtual addressing schemes were de-
veloped which used a large capacity disk storage unit to simulate and
substitute for a large physical memory. Today, with low memory prices,
it makes much more sense to augment virtual memory addressing with
a large physical memory in order to avoid as much as possible the disk
input/output bottleneck. With the advent of CCD’s which produce 4
million pixels per image, 8 megabytes of memory would appear to be
the absolute minimum any new image processing system should support,
and two to eight times this amount would be extremely useful.

II. The Choices

There appear to be two classes of machines currently available
which may be suited to our needs. The first uses the Motorola 68020
CPU and runs on the VMEbus backplane. We will refer to this combina-
tion as the VME/20 computer system. The 68020 is a 32-bit micropro-
cessor which supports a fast floating-point coprocessor, virtual memory
management, and 32-bit physical addresses (although most implemen-
tations currently use only a subset of this 4-gigabyte address range).
The VMEbus is a modern, internationally standardized computer bus
designed to support multiple processors, 32-bit data transfers, and a
data transfer rate as high as 20 megabytes per second. Furthermore,
it is designed for reliable, maintenance-free operation using 96-pin DIN
connectors instead of the usual failure-prone card edge connectors. The
VMEDbus, though relatively new in the U. S., is already widely sup-
ported by well over 100 firms producing VMEbus-compatible products
at competitive prices. We expect the VMEDbus to become the dominant
bus structure for high-performance super-microcomputers in the near
future.

The second candidate for our CCD data-acquisition computer is
the Digital Equipment Corporation (DEC) MicroVAX-II. This machine
runs the same popular VMS operating system used on Digital’s larger
VAX machines and, under certain circumstances, 1s claimed to have a
performance comparable to that of a VAX-11/780. Its floating-point
arithmetic is particularly fast.

III. The Criteria

There are a number of possible criteria which we could use to
choose the best computer system for our needs. As the following com-
parisons will indicate, the VME/20 and the MicroVAX both have certain

strengths and weaknesses.

A. Software Support and Development

Since software development always costs much more than the
computer hardware, this is a very important criterion. The MicroVAX
will use the VAX/VMS operating system. This operating system is
widely used in the astronomical community and we are using it on our
own VAX-11/780 departmental computer (which was purchased with
NSF funds). Most user programs would be written in VAX Fortran-
77. Unfortunately, if any device drivers have to be written for CCD
controllers and other special hardware they will have to be written in
VAX Macro-11 assembly language or VAX Bliss, a proprietary DEC
language. There is a large body of user-level software which we could
transport to the MicroVAX with little effort, including our own VISTA
image processing system.

The VME/20 will run the UNIX operating system. This is also
a popular operating system and is used on many VAX machines. This
is also the operating system (UNIX Version 7) we are now using on
our LSI-11/73 data-acquisition computers. As part of the normal UNIX
software we will have Fortran-77, C, and Pascal programming languages
available. For this reason, we could transport essentially all of the data-
acquisition and data reduction software (written in C) from the LSI-
11/73 to the VME/20. We estimate that about 20% of the code dealing
with particular hardware devices will have to be rewritten in moving
from our LSI-11/73 to a VME/20 system. The entire data-acquisition
systern would have to rewritten if we went to a MicroVAX VMS machine.
We have extensize reduction software written both for UNIX and for
VAX/VMS, so the transfer of reduction software is not a major issue,
We will definitely save more time and money, and have an operational
computer sooner, by using the VME/20 running UNIX rather than the
MicroVAX running VMS.

B. Real-Time Support

UNIX is often said to be a poor ‘real-time’ operating system,
while VAX/VMS is said to be a good ‘real-time’ operating system, and
this is cited as a reason why UNIX should not be used to run a data-
acquisition system. If good ‘real-time’ response is defined to mean that
an external interrupt is acted upon within a short period of time, and
if that period of time is generously defined to be 20 microseconds, then
neither operating system can be said to have good ‘real-time’ response
unless the code handling the interrupt is located within the operating

system itself. In other words, user programs can not react quickly to
external interrupts. We have seldom, in fact, had the need for this
type of fast response since we now use small, dedicated microprocessor-
equipped controllers to handle most real-time functions.

VAX/VMS does provide a mechanism whereby a user process
can supply an interrupt routine or a device driver for a particular hard-
ware device, but several important restrictions apply to its use. First, a
special device driver and interrupt routine must still be used in the op-
erating system. These system routines are used to call the user-supplied
routines. Second, once configured with the special driver, the device can
not be used with normal system calls. Third, user-supplied routines can
not initiate direct-memory-access (DMA) data transfers by the device,
as is required by most high-speed data devices. Though not explained in
the DEC manuals, this appears to be a hardware restriction imposed by
the fact that the memory and peripheral controllers reside on different,
incompatible busses which require address translation hardware to get
data from one bus to the other. VMS does not permit user programs to
manipulate this translation hardware. Therefore, in most cases one will
still be forced to write a complete device driver and to install it as part
of the operating system. Hopefully, off-the-shelf hardware with vendor-
supplied device drivers could be purchased, though this may not always
be possible. Given these restraints, the question of which system can
provide true, real-time response reduces to deciding for which system it
is easier to write a device driver and interrupt handler. Because UNIX
is a much simpler system, and because, in UNIX, the device driver and
interrupt handler can be written in C, and because we have already writ-
ten several device drivers for our current LLSI-11 UNIX system, we would
find device drivers much easier to write for UNIX than for VAX/VMS.

Our experience with both UNIX and VMS shows that the real
difference between UNIX and VMS is not one of ‘real-time’ response,
but rather one of exclusive CPU use. Under VAX/VMS the process with
the highest priority runs ahead of all others and can therefore acquire
the exclusive use of the CPU. The normal UNIX priority scheme is
somewhat more egalitarian, in that all processes get to run, regardless
of their established priority; high priority processes just get to run more
often and for longer periods of time. A process cannot acquire exclusive
use of the CPU by simply raising its priority. This has been the only
major aspect of UNIX which we have found to be less than optimum
for a data-acquisition system. We have overcome this by modifying the
UNIX priority scheme slightly, so that the highest possible priority runs

4

exclusively. This modification to UNIX was easy to do because 1) UNIX
is a relatively simple operating system and the modifications were minor,
and 2) the source code for the system is readily available to universities
at very low cost. The same is true for UNIX BSD 4.2 (Berkeley Software
Distribution) which we would be running on a VME/20 system.

We have found several other functions useful in a data-acquisition
system. Among them is the ability to ‘lock’ a process in memory, so
that the process does not get ‘swapped’ out to the disk. Both UNIX
and VAX /VMS support this ‘lock’ function. We have also found it con-
venient to be able to time events or wait for specified periods of time to
a resolution finer than one second. This can be done under VAX/VMS
but it is not normally possible under UNIX. We have also found a need
for modes of inter-process communications in addition to the normal
UNIX ‘pipes’. We have added both the timer and inter-process com-
munications facilities to our LSI-11/73 UNIX system as pseudo-devices
(there’s no real hardware associated with them). Under BSD 4.2 UNIX
and VAX/VMS extensive inter-process facilities already exist.

C. Large Address Space

To deal efficiently with very large CCD data sets the chosen
computer must support both a large virtual address space and a large
physical memory. If the virtual address space is large but the physical
memory small, a very large fraction of the available CPU time (as well
as real, elapsed time) will be wasted swapping data blocks on the disk.
The MicroVAX II architecture can support an absolute maximum of
16 megabytes of physical memory and the largest enclosure currently
offered by DEC can accomodate only nine megabytes. It is not known
whether future MicroVAX machines (MicroVAX III?) will support more
physical memory. The VMEbus, on the other hand, is designed to acco-
modate 32-bit addresses (4 gigabytes). However, most manufacturers of
68020 CPU’s are currently offering support ranging from 16 megabytes
to 256 megabytes of physical memory. The larger physical address space
definitely makes the VMEDbus a better choice for our applications.

D. Overall Performance

In benchmark tests developed by John Hennessey at Stanford
University and presented by Sun Microsystems Inc., the MicroVAX II
floating-point performance was shown to be about a factor of two bet-
ter than that available from the Motorola 68881 float-point coprocessor
often used with the 68020 CPU. On the other hand, the integer arith-
metic speed of the 68020 CPU is greater than the MicroVAX’s. Since the

VME/20 uses a high speed 32-bit bus instead of the 16-bit Q-bus, I/O
operations are always faster on the VME/20. Because of the superior
bus the actual performance of the VME/20 machine in most real-world
applications was found to be equal to the MicroVAX, even when ex-
tensive floating point operations are done. The higher I/O throughput
becomes especially important when dealing with multi-megabyte images
stored on a disk. The competitive nature of the VME/20 market also
means that available floating point performance is likely to increase in
the near future. For instance, Sun Microsystems has already announced
a floating point accelerator which gives their VME/20 system twice the
floating point performance of a DEC VAX-11/780 with floating point
accelerator.

Though perhaps of less concern to observers than to theoreti-
cians, it should be noted that the Motorola 68881 floating-point co-
processor is a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (P754) whereas DEC floating-point arith-
metic is not. This lack of standardization has been known to cause
problems when transporting code from non-DEC machines.

E. Multi-processor Support

It is very probable that in the future the easiest and least ex-
pensive way to gain greater computing power will be to add CPU’s
(i.e. parallel processing) to a computer instead of starting over with
a completely new, faster computer system. To effectively use multiple
CPU’s to process very large CCD data sets the CPU’s will have to be
‘tightly coupled.” For the highest performance this means that they will
probably have to reside on the seme backplane, share the same mass
storage peripherals, and have a large block of common, shared memory.
The additional time and processing required to ship very large data sets
over any transmission system between completely separate computers
could be prohibitive. Separate CPU’s coupled only through a multi-
ported disk would suffer from disk contention and limited throughput.
Of course one could also envision a multi-CPU computer in which one
CPU was assigned the sole task of handling I/O over a very fast optical
fiber link. Multiple CPU’s on a single backplane also provide a very ef-
fective way of separating the small number of true real-time tasks from
all non-real-time tasks by assigning the two types of tasks to separate
CPU’s.

Both the VMEbus and the 68020 are designed to support mul-
tiple CPU’s on one backplane. This is done with a combination of
bus-master and bus-arbitration control lines on the VMEbus and by

the implementation of non-interruptable read-modify-write instructions
in the 68020 CPU. In fact, many ‘smart’ disk and tape controllers for
the VMEbus already utilize some of these features and have their own
68000 CPU’s. Manufacturers are also working on multiple-CPU imple-
mentations of UNIX. And a separate processor for real-time functions
would make it possible to free UNIX, running on the other processor {or
processors), from any real-time responsibilities.

Clearly, these are developments for the future. But the VMEbus
is already designed to make them possible and we expect to see them
become commonplace in the next five years. The MicroVAX does not
support multiple CPU’s on one backplane and the MicroVAX II cannot
be part of a VAX-cluster, DEC’s (extremely expensive) implementation
of ‘tight’ CPU coupling.

F. File Structures

UNIX has only two basic ways of storing data onto a disk, as
‘cooked’ files or as ‘raw’ files. Cooked files are the normal UNIX files
for which UNIX maintains a file directory. UNIX keeps a list of unused
physical blocks on the disk, and it assigns these blocks to a cooked
file as the file is written to the disk. Usually, the assigned blocks are
not located contiguously on the disk so the contents of the file tend to
become scattered over the disk surface. This can lead to an appreciable
reduction in throughput when reading or writing very large files (like
CCD images), because the disk read/write heads must make a large
number of motions over the disk surface in order to access the entire
file. To obtain the best possible throughput, our current UNIX data-
taking programs store CCD images using the ’raw’ mode of UNIX disk
file I/0. In ‘raw’ mode data is written directly from the user’s program
to the disk device without first being buffered through the operating
system. The file is written in amounts which equal an integral multiple
of the physical disk block size, and the blocks are physically contiguous
on the disk. This provides the highest possible efficiency and throughput
when reading from or writing to the disk. In raw mode, UNIX does not
maintain a directory structure, so our data-taking program maintains a
simple directory of CCD images.

VAX/VMS has many different ways of organizing data in disk
files, including the ability to create files whose disk blocks are contiguous.
Therefore, in this case there is little distinction between UNIX based
systems and VAX/VMS based systems. In fact, the most efficient way
of maintaining contiguous files under VMS is probably to emulate the
UNIX ‘raw’ mode. This would be done by creating a single, very large

continguous VMS file into which one could store as many CCD images
as would fit into the allocated file.

G. Open and Standardized Architecture

One major difference between the MicroVAX computer and one
based on the VMEbus is the basic philosophy of the manufacturers in-
volved. In producing the MicroVAX, DEC apparently prefers to pro-
duce a machine which is ‘closed’, with a peculiar hybrid of modified
Q-bus and proprietary non-industry standard memory backplane and
bus structure. The same closed, proprietary approach is used by DEC
in virtually all of the software products offered for the MicroVAX.

One example of the problems, higher costs, and reduced flexibil-
ity which the user encounters because of DEC’s proprietary software is
worth noting. While looking into the possible use of Ethernet to create a,
local-area-network, we investigated the availability of ‘terminal servers’,
which allow normal asynchronous, serial terminals to be connected into
the Ethernet network. We found that there are no second-source ter-
minal servers manufactured which use the DECNET network protocol
because it is a proprietary protocol known only to DEC. There are many
terminal servers available which use the well known, public TCP /IP net-
work protocol, which is the protocol used on many UNIX systems. The
MicroVAX user is then left with two choices: 1) Buy a DEC terminal
server which may cost as much as three times the cost of similar second-
source products that use TCP/IP, or 2) Try to run both TCP/IP and
DECNET on the same MicroVAX (VMS must have DECNET for inter-

processor communications).

The VMEbus, on the other hand, is a world-wide standardized
bus with fully published bus specifications. Because of this many pe-
ripheral manufacturers are producing a wide variety of high performance
devices and interfaces for the VMEbus, and the number of manufactur-
ers is growing rapidly. Some VME/20 manufacturers have implemented
special high-speed memory busses for even greater system performance.
But, unlike the MicroVAX, the VMEbus architecture is designed to sup-
port this type of expansion and the memory cards which have the pri-
vate memory bus can also be accessed directly from the VMEbus. These
dual-ported memory cards make multi-CPU computers much more effi-
cient because bus contention occurs only when the CPU’s access shared
memory or peripherals on the VMEbus and not when they fetch pro-
gram instructions over their private memory bus.

Because the VMEbus is a non-proprietary standard, peripheral
manufacturers also know they will not be sued for producing new prod-

ucts for the VMEbus. (DEC is suing Emulex for making MicroVAX
peripheral controllers).

Some people have argued that, in spite of the ‘closed’ architec-
ture of the MicroVAX, it would be best to purchase a MicroVAX with
all peripherals supplied by DEC. They argue that this type of ‘single
source’ computer would be easier and less costly to keep running since
DEC would be responsible for the maintenance of the entire machine
(assuming DEC maintenance was purchased). However, we do not be-
lieve this is true. Our experience with our own maintenance of our
LSI-11/73 systems shows that we are quite capable of isolating failing
components to the board level, and that failing boards can be returned
to the manufacturer for repair. The cost of long term DEC maintenance
on small systems is probably more than the cost of spare boards and
repairs. This is especially true if DEC maintenance is required between
5 PM and 8 AM, which are the important hours for astronomy. In re-
ality, it is probably not possible to assemble a suitable ‘single-source’
machine anyway, since DEC does not manufacture everything we need.

The ‘open’ architecture of the VMEDbus also encourages compe-
tition among manufacturers and much lower prices result. Exactly the
opposite is true if one wished to buy a ‘single-source’ MicroVAX. For
instance, four megabytes of memory for the VMEbus costs less than
$5000, and the cost is rapidly dropping. The same four megabytes of
memory for the MicroVAX, purchased from DEC, costs $14,000. Of
course it is possible to buy much cheaper memory for the MicroVAX if
the mythical ‘single-source’ machine is abandoned.

IV. Alternates

We are not aware of any other widely available type of computer
which would meet our needs. We have considered running UNIX, for
software compatibility, on the MicroVAX, but this combination seems
to be particularly bad. Although DEC UNIX, known as ULTRIX, is a
derivative of BSD 4.2 UNIX, the Sun Microsystems benchmarks showed
that programs run under DEC’s MicroVAX UNIX execute significantly
slower than the same programs run under MicroVAX VMS or under
Sun’s VME/20 BSD 4.2 UNIX. Apparently ULTRIX does not get the
same level of attention that VMS does at DEC. Therefore, running
ULTRIX, we would be left with an inefficient system running on an
inefficient Q-bus backplane.

V. Conclusion

Both the VME/20 and the MicroVAX II are good, high perfor-

9

mance machines. But we are not looking for just a good machine; we
need a machine that can grow as our needs grow. For our current needs
a VME/20 system is clearly the best choice. Software development time
and costs will be less because we will be able to transport much of
our current UNIX based data-acquistion and -reduction software to a
VME/20. We also believe that hardware costs will be less because of
the open architecture of the VMEbus and the competitive nature of the
VME marketplace. The VMEbus is a clearly superior I/O bus when
compared to the modified Q-bus used on the MicroVAX II. And, unlike
the MicroVAX II, the VMEbus provides a reliable long-term path for
future performance upgrade and system expansion without being tied
to a single vendor whose interests may not coincide with our own. We
feel that the multiprocessor capabilities of most VME/20 systems is a
very important factor for future enhancements. While the MicroVAX
II is likely to be around for many years to come, its use of the Q-bus
means that it also represents a dead-end as far as future performance
upgrades are concerned. The 16-megabyte physical memory limit on
the MicroVAX memory bus also makes the machine less suitable for the
efficient processing of very large CCD images.

The biggest market for VMEbus computers to date has been in
the field of industrial machine control and factory automation. As a
result there is already a wide variety of inexpensive VMEbus based pe-
ripheral controllers, single-board computers, ROM cards, backplane as-
semblies, and other components which astronomical instrument builders
would find useful in designing small, dedicated instrument controllers.
Many companies make single-board computers which use the Motorola
68000 CPU. If such a CPU were to be used for instrument control the
software for the controller could be developed on the large VMEbus
data-acquisition computer. Furthermore, the instrument controller code
could be written mostly in the high-level language C, since C does not
depend on the presence of any operating system and since the UNIX
object code linker can produce an executable program suitable for stor-
age in ROM. The use of the VMEbus and the 68000 CPU in both the
data-acquisition computer and the instrument controllers will mean that
technical personnel responsible for maintaining the system will have
to learn only one hardware architecture and one programming envi-
ronment. This should make both hardware and software maintenance
easier, less expensive, and more reliable. Lick Observatory is currently
planning to use VMEbus based computers for its future instrument con-
trollers.

10

